首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have explored the mechanisms of uncatalyzed membrane ion permeation using atomistic simulations and electrophysiological recordings. The solubility-diffusion mechanism of membrane charge transport has prevailed since the 1960s, despite inconsistencies in experimental observations and its lack of consideration for the flexible response of lipid bilayers. We show that direct lipid bilayer translocation of alkali metal cations, Cl, and a charged arginine side chain analog occurs via an ion-induced defect mechanism. Contrary to some previous suggestions, the arginine analog experiences a large free-energy barrier, very similar to those for Na+, K+, and Cl. Our simulations reveal that membrane perturbations, due to the movement of an ion, are central for explaining the permeation process, leading to both free-energy and diffusion-coefficient profiles that show little dependence on ion chemistry and charge, despite wide-ranging hydration energies and the membrane’s dipole potential. The results yield membrane permeabilities that are in semiquantitative agreement with experiments in terms of both magnitude and selectivity. We conclude that ion-induced defect-mediated permeation may compete with transient pores as the dominant mechanism of uncatalyzed ion permeation, providing new understanding for the actions of a range of membrane-active peptides and proteins.  相似文献   

2.
Transporters and ion channels are conventionally categorised into distinct classes of membrane proteins. However, some membrane proteins have a split personality and can function as both transporters and ion channels. The excitatory amino acid transporters (EAATs) in particular, function as both glutamate transporters and chloride (Cl?) channels. The EAATs couple the transport of glutamate to the co-transport of three Na+ ions and one H+ ion into the cell, and the counter-transport of one K+ ion out of the cell. The EAAT Cl? channel is activated by the binding of glutamate and Na+, but is thermodynamically uncoupled from glutamate transport and involves molecular determinants distinct from those responsible for glutamate transport. Several crystal structures of an EAAT archaeal homologue, GltPh, at different stages of the transport cycle, alongside numerous functional studies and molecular dynamics simulations, have provided extensive insights into the mechanism of substrate transport via these transporters. However, the molecular determinants involved in Cl? permeation, and the mechanism by which this channel is activated are not entirely understood. Here we will discuss what is currently known about the molecular determinants involved in EAAT-mediated Cl? permeation and the mechanisms that underlie their split personality.  相似文献   

3.
The ability of arginine-rich peptides to cross the lipid bilayer and enter cytoplasm, unlike their lysine-based analogues, is intensively studied in the context of cell-penetrating peptides. Although the experiments have not yet reconstructed their internalization mechanism, the computational studies have shown that the type or charge of lipid polar groups is one of the crucial factors in their translocation. In order to gain more detailed insight into the interaction of guanidinium (Gdm+) and ammonium (NH4+) cations, as important building blocks in arginine and lysine amino acids, with lipid bilayers, we conducted the experimental and computational study that tackles this phenomenon. The adsorption of Gdm+ and NH4+ on lipid bilayers prepared from a zwitterionic (DPPC) and an anionic (DPPS) lipid was examined by thermoanalytic and spectroscopic techniques. Using temperature-dependent UV–Vis spectroscopy and DSC calorimetry we determined the impact of Gdm+ and NH4+ on the thermotropic properties of lipid bilayers. FTIR data, along with molecular dynamics simulations, unraveled the molecular-level details on the nature of their interactions, showing the proton transfer between NH4+ and DPPS, but not between Gdm+ and DPPS. The findings originated from this work imply that Gdm+ and NH4+ form qualitatively different interactions with lipids of different charge which is reflected in the physico-chemical interactions that arginine-and lysine-based peptides establish at a complex and chemically heterogeneous environment such as the biological membrane.  相似文献   

4.
Light-driven electron transfer reactions cause the active accumulation of protons inside thylakoids, yet at steady state the electrical potential difference across the thylakoid membrane is very small; therefore, there must be a flux of other ions to balance the charge that would otherwise be built up by the net movement of H+. This paper presents direct measurements of ion movements through channels in the thylakoid membrane. These were made possible by fusing thylakoid vesicles from spinach (Spinacia oleracea L.) into planar lipid bilayers, using techniques developed originally to study sarcoplasmic reticulum. No Mg2+ current was found, but voltage-dependent channels have been characterized, these being somewhat selective for K+ over Cl. The data are consistent with a role for these channels in charge balance during light-driven H+ movements.  相似文献   

5.
The ability of biological ion channels to conduct selected ions across cell membranes is critical for the survival of both animal and bacterial cells. Numerous investigations of ion selectivity have been conducted over more than 50 years, yet the mechanisms whereby the channels select certain ions and reject others are not well understood. Here we report a new application of Jarzynski’s Equality to investigate the mechanism of ion selectivity using non-equilibrium molecular dynamics simulations of Na+ and K+ ions moving through the KcsA channel. The simulations show that the selectivity filter of KcsA adapts and responds to the presence of the ions with structural rearrangements that are different for Na+ and K+. These structural rearrangements facilitate entry of K+ ions into the selectivity filter and permeation through the channel, and rejection of Na+ ions. A mechanistic model of ion selectivity by this channel based on the results of the simulations relates the structural rearrangement of the selectivity filter to the differential dehydration of ions and multiple-ion occupancy and describes a mechanism to efficiently select and conduct K+. Estimates of the K+/Na+ selectivity ratio and steady state ion conductance for KcsA from the simulations are in good quantitative agreement with experimental measurements. This model also accurately describes experimental observations of channel block by cytoplasmic Na+ ions, the “punch through” relief of channel block by cytoplasmic positive voltages, and is consistent with the knock-on mechanism of ion permeation.  相似文献   

6.
Yoo J  Cui Q 《Biophysical journal》2008,94(8):L61-L63
Free energy perturbation calculations are carried out to estimate the effective pKa of an arginine (Arg) sidechain as a function of its location in the dipalmitoylphosphatidylcholine bilayer. Similar to previous all-atom simulations of the voltage sensor domain of a potassium channel in the membrane with charged Arg residues, the membrane and water structures deform to stabilize the charge of the Arg analog. As a result, the computed pKa is >7 throughout the membrane although the value is very close to 7 near the center of the bilayer. With additional stabilizations from negatively charged amino acids or lipid molecules, it is reasonable to expect that Arg in membrane proteins (once in the membrane) can adopt the protonated state despite the low dielectric nature of the bulk lipid membrane.  相似文献   

7.
Optical waveguide lightmode spectroscopic (OWLS) techniques were probed for monitoring ion permeation through channels incorporated into artificial lipid environment. A novel sensor set-up was developed by depositing liposomes or cell-derived membrane fragments onto hydrophilic polytetrafluoroethylene (PTFE) membrane. The fibrous material of PTFE membrane could entrap lipoid vesicles and the water-filled pores provided environment for the hydrophilic domains of lipid-embedded proteins. The sensor surface was kept clean from the lipid holder PTFE membrane by a water- and ion-permeable polyethylene terephthalate (PET) mesh. The sensor set-up was tested with egg yolk lecithin liposomes containing gramicidin ion channels and with cell-derived membrane fragments enriched in GABA-gated anion channels. The method allowed monitoring the move of Na+ and organic cations through gramicidin channels and detecting the Cl-channel functions of the (α5β2γ2) GABAA receptor in the presence or absence of GABA and the competitive GABA-blocker bicuculline.  相似文献   

8.
Maintenance of electrochemical potential gradients across lipid membranes is critical for signal transduction and energy generation in biological systems. However, because ions with widely varying membrane permeabilities all contribute to the electrostatic potential, it can be difficult to measure the influence of diffusion of a single ion type across the bilayer. To understand the electrodiffusion of H+ across lipid bilayers, we used a pH-sensitive fluorophore to monitor the lumenal pH in vesicles after a stepwise change in the bulk pH. In vesicles containing the ion channel gramicidin, the lumenal pH rapidly approached the external pH. In contrast, the lumen of intact vesicles showed a two stage pH response: an initial rapid change occurred over ~ 1 min, followed by a much slower change over ~ 24 h. We provide a quantitative interpretation of these results based on the Goldman–Hodgkin–Katz ion fluxes discharging the electrical capacitance of the bilayer membrane. This interpretation provides an estimate of the permeability of the membranes to Na+ and Cl ions of ~ 10− 8 cm/s, which is ~ 3 orders of magnitude faster than previous reports. We discuss possible mechanisms to account for this considerably higher permeability in vesicle membranes.  相似文献   

9.
The cyclic dodecapeptide PV, cyclo-(d-Val-l-Pro-l-Val-d-Pro)3, a structural analogue of the ion-carier valinomycin, increase the cation permeability of lipid bilayer membranes. This paper reports the results of two types of relaxation experiments, namely relaxation of the membrane current after a voltage jump and decay of the membrane voltage after a charge pulse in lipid bilayer membranes exposed to PV. From the relaxation data, the rate constant for the translocation of the ion carrier complex across the membrane, as well as the partition coefficient of the complex between water and membrane solution interface were computed and found to be about one order of magnitude less than the comparable values for valinomycin (Val). Furthermore, the dependence of the initial membrane conductivity on ion concentration was used to evaluate the equilibrium constant, K, of complexation between PV and some monovalent cations in water. The values of K yield the following selectivity sequence of PV: Na+ < NH4+ < K+ < Cs+ < Rb+. These and earlier results are consistent with the idea that PV promotes cation movement across membranes by the solution complexation mechanism which involves complexation between ion and carrier in the aqueous phase and transport of the carrier across the membrane. In the particular form of the solution complexation mechanism operating here, the PV present in the PV-cation complex carrying charge across the membrane derives from the side from which the current is flowing (cis-mechanism). As shown previously, valinomycin, in contrast to PV, acts by an interfacial complexation mechanism in which the Val in the Val-cation complex derives from the side toward which current is flowing (trans-mechanims). The comparison of the kinetic properties of these two closely related compounds yields interesting insights into the relationship between chemical structure and function of ion carriers.  相似文献   

10.
细胞内离子在气孔运动中的作用   总被引:1,自引:0,他引:1  
高巍  尚忠林 《植物学报》2010,45(5):632-639
气孔运动与植物水分代谢密切相关。保卫细胞中的无机离子作为第二信使(Ca2+)或者渗透调节物质(K+、Cl)在响应 外界理化因子的刺激、调节保卫细胞膨压过程中发挥重要作用。保卫细胞质膜和液泡膜上的离子通道作为各种刺激因素作 用的靶位点, 是保卫细胞离子转运的关键组分, 在气孔运动调控过程中扮演关键角色。该文对近年来保卫细胞离子的作用 和离子通道研究的进展进行了综述。  相似文献   

11.
The x-ray structure of LeuT, a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters, provides a great opportunity to better understand the molecular basis of monovalent cation selectivity in ion-coupled transporters. LeuT possesses two ion binding sites, NA1 and NA2, which are highly selective for Na+. Extensive all-atom free-energy molecular dynamics simulations of LeuT embedded in an explicit membrane are performed at different temperatures and various occupancy states of the binding sites to dissect the molecular mechanism of ion selectivity. The results show that the two binding sites display robust selectivity for Na+ over K+ or Li+, the competing ions of most similar radii. Of particular interest, the mechanism primarily responsible for selectivity for each of the two binding sites appears to be different. In NA1, selectivity for Na+ over K+ arises predominantly from the strong electrostatic field arising from the negatively charged carboxylate group of the leucine substrate coordinating the ion directly. In NA2, which comprises only neutral ligands, selectivity for Na+ is enforced by the local structural restraints arising from the hydrogen-bonding network and the covalent connectivity of the polypeptide chain surrounding the ion according to a “snug-fit” mechanism.  相似文献   

12.
Previous studies have shown that cytoplasmic K+ release and the associated E2 → E1 conformational change of the Na+,K+-ATPase is a major rate-determining step of the enzyme's ion pumping cycle and hence a prime site of acute regulatory intervention. From the ionic strength dependence of the enzyme's distribution between the E2 and E1 states, it has also been found that E2 is stabilized by an electrostatic attraction. Any disruption of this electrostatic attraction would, thus, have profound effects on the rate of ion pumping. The aim of this paper is to identify the location of this interaction. Using enhanced-sampling molecular dynamics simulations with a predicted N-terminal structure added to the X-ray crystal structure of the Na+,K+-ATPase, a previously postulated salt bridge between Lys32 and Glu233 (rat sequence numbering) of the enzyme's α-subunit can be excluded. The residues never approach closely enough to form a salt bridge. In contrast, strong interactions with anionic lipid head groups were seen. To investigate the possibility of a protein-lipid interaction experimentally, the surface charge density of Na+,K+-ATPase-containing membrane fragments was estimated from zeta potential measurements to be 0.019 (± 0.001) C m−2. This is in good agreement with the charge density previously determined to be responsible for stabilization of the E2 state of 0.023 (± 0.009) C m−2 and the membrane charge density estimated here from published electron-microscopic images of 0.018C m−2. The results are, therefore, consistent with an interaction of the Na+,K+-ATPase α-subunit N-terminus with negatively-charged lipid head groups of the neighbouring cytoplasmic membrane surface as the origin of the electrostatic interaction stabilising the E2 state.  相似文献   

13.
Crystal structures of several bacterial Nav channels have been recently published and molecular dynamics simulations of ion permeation through these channels are consistent with many electrophysiological properties of eukaryotic channels. Bacterial Nav channels have been characterized as functionally asymmetric, and the mechanism of this asymmetry has not been clearly understood. To address this question, we combined non-equilibrium simulation data with two-dimensional equilibrium unperturbed landscapes generated by umbrella sampling and Weighted Histogram Analysis Methods for multiple ions traversing the selectivity filter of bacterial NavAb channel. This approach provided new insight into the mechanism of selective ion permeation in bacterial Nav channels. The non-equilibrium simulations indicate that two or three extracellular K+ ions can block the entrance to the selectivity filter of NavAb in the presence of applied forces in the inward direction, but not in the outward direction. The block state occurs in an unstable local minimum of the equilibrium unperturbed free-energy landscape of two K+ ions that can be ‘locked’ in place by modest applied forces. In contrast to K+, three Na+ ions move favorably through the selectivity filter together as a unit in a loose “knock-on” mechanism of permeation in both inward and outward directions, and there is no similar local minimum in the two-dimensional free-energy landscape of two Na+ ions for a block state. The useful work predicted by the non-equilibrium simulations that is required to break the K+ block is equivalent to large applied potentials experimentally measured for two bacterial Nav channels to induce inward currents of K+ ions. These results illustrate how inclusion of non-equilibrium factors in the simulations can provide detailed information about mechanisms of ion selectivity that is missing from mechanisms derived from either crystal structures or equilibrium unperturbed free-energy landscapes.  相似文献   

14.
The balance of K+, Na+, and Cl fluxes across the cell membrane with the Na+/K+ pump, ion channels, and Na+K+2Cl (NKCC) and Na+-Cl (NC) cotransport was calculated to determine the mechanism of cell shrinkage in apoptosis. It is shown that all unidirectional K+, Na+, and Cl fluxes; the ion channel permeability; and the membrane potential can be found using the principle of the flux balance if the following experimental data are known: K+, Na+, and Cl concentrations in cell water; total Cl flux; total K+ influx; and the ouabain-inhibited pump component of the Rb+(K+) influx. The change in different ionic pathways during apoptosis was estimated by calculations based on the data reported in the preceded paper (Yurinskaya et al., 2010). It is found that cell shrinkage and the shift in ion balance in U937 cells induced to apoptosis with 1 μM staurosporine occur due to the coupling of reduced pump activity with a decrease in the integral permeability of Na+ channels, whereas K+ and Cl channel permeability remains almost unchanged. Calculations show that only a small part of the total fluxes of K+, Na+, and Cl account for the fluxes mediated by NKCC and NC cotransporters. Despite the importance of cotransport fluxes for maintaining the nonequilibrium steady-state distribution of Cl, they cannot play a significant role in apoptotic cell shrinkage because of their minority and cannot be revealed by inhibitors.  相似文献   

15.
The crystallographic structure of a potassium channel, Kv1.2, in an open state makes it feasible to simulate entire K+ ion permeation events driven by a voltage bias and, thereby, elucidate the mechanism underlying ion conduction and selectivity of this type of channel. This Letter demonstrates that molecular dynamics simulations can provide movies of the overall conduction of K+ ions through Kv1.2. As suggested earlier, the conduction is concerted in the selectivity filter, involving 2-3 ions residing mainly at sites identified previously by crystallography and modeling. The simulations reveal, however, the jumps of ions between these sites and identify the sequence of multi-ion configurations involved in permeation.  相似文献   

16.
Summary The questions underlying ion permeation mechanisms, the types of experiments available to answer these questions, and the properties of some likely permeation models are examined, as background to experiments designed to characterize the mechanism of alkali cation permeation across rabbit gallbladder epithelium. Conductance is found to increase linearly with bathing-solution salt concentrations up to at least 400mm. In symmetrical solutions of single alkali chloride salts, the conductance sequence is K+>Rb+>Na+>Cs+∼Li+. The current-voltage relation is linear in symmetrical solutions and in the presence of a single-salt concentration gradient up to at least 800 mV. The anion/cation permeability ratio shows little change with concentration up to at least 300mm. Ca++ reduces alkali chloride single-salt dilution potentials, the magnitude of the effect being interpreted as an inverse measure of cation equilibrium constants. The equilibrium-constant sequence deduced on this basis is K+>Rb+>Na+∼Cs+∼Li+. These results suggest (1) that the mechanism of cation permeation in the gallbladder is not the same as that in a macroscopic ion-exchange membrane; (2) that cation mobility ratios are closer to one than are equilibrium-constant ratios; (3) that the rate-limiting step for cation permeation is in the membrane interior rather than at the membrane-solution interface; and (4) that the rate-controlling membrane is one which is sufficiently thick that it obeys microscopic electroneutrality.  相似文献   

17.
The Na+/l-glutamate (l-aspartate) cotransport system present at the level of rat intestinal brush-border membrane vesicles is specifically activated by the ions K+ and Cl?. The presence of 100 mM K+ inside the vesicles drastically enhances the uptake rate and the transient intravesicular accumulation (overshoot) of the two acidic amino acids. It has been demonstrated that the activation of the transport system depended only in the intravesicular K+ concentration and that in the absence of any sodium gradient, an outward K+ gradient was unable to influence the Na+/acidic amino acid transport system. It was also found that Cl? could specifically activate the Na+-dependent l-glutamate (l-aspartate) uptake either in the presence or in the absence of K+. Also the effect of Cl? was observed only in the presence of an inward Na+ gradient and it was noted to be higher when chloride ion was present on both sides of the membrane vesicles. No influence (activation or accumulation) was observed in the absence of the Na+ gradient and in the presence of chloride gradient. l-Glutamate uptake measured in the presence of an imposed diffusion potential and in the presence of K+ or Cl? did not show any translocation of net charge.  相似文献   

18.
Summary Permeability properties and the effects of a changed membrane potential on Ca2+ release of sarcoplasmic reticulum vesicles of rabbit skeletal muscle were investigated by Millipore filtration. The relative permeability of sarcoplasmic reticulum to solutes determined under conditions of isotope exchange at equilibrium and/or under conditions of net flow of solute and water into the vesicles was as follows: sucrose, Ca2+, Mn2+–, choline+, Tris++, Na+, Li+, Cl. Transient membrane potentials were induced by rapidly changing the ionic environment of the vesicles. Knowledge of the relative permeation rates of the above ions allowed prediction of the direction and extent of membrane polarization. Osmotic effects in the polarization measurements due to the rapid influx of solute and water into the vesicles were minimized by using media containing a fast (K+ or Cl) and a relatively slow (gluconate or choline+) penetrating ion.45Ca2+ efflux from vesicles derived from different parts of the sarcoplasmic reticulum structure was not appreciably changed when vesicles were made more positive inside (choline chloride potassium gluconate) or more negative inside (potassium gluconate choline chloride). These studies suggest that part or all of the ion-induced changes in sarcoplasmic reticulum membrane permeability, previously interpreted to indicate depolarization-induced Ca2+ release, may be due to osmotic effects.  相似文献   

19.
In this paper, one nanoporous graphene grafting several zwitterionic polymer chains was designed as the osmosis membrane for seawater desalination. Using molecular dynamics simulation, the efficiency and mechanism of salt rejection were discussed. The simulated results showed that the zwitterionic polymer chains on nanoporous graphene can form the charge channel to block Na+ and Cl? ions pass through, and the slat rejection efficiency of functionalised graphene can reach to about 90%. In the simulation, the steric hindrance and electrostatic interaction are the main factors for the salt rejection. With time evolution, the charge channel formed by the soft polymer chains can decrease the effective pore area of membrane, leading to the increase of steric hindrance; the positive and negative centres of polymer chains can adsorb Na+ and Cl? ions under electrostatic interaction in the solution, contributing into the increase of charge density above the membrane. These conclusions are consistent with experimental report. Our designed osmosis membrane about the graphene is helpful for improving the potential application of defect graphene in water desalination and reducing the trouble of obtaining appropriate graphene sheet with small aperture.  相似文献   

20.
《Biophysical journal》2023,122(4):624-631
In biology, release of Ca2+ ions in the cytosol is essential to trigger or control many cell functions. Calcium signaling acutely depends on lipid membrane permeability to Ca2+. For proper understanding of membrane permeability to Ca2+, both membrane hydration and the structure of the hydrophobic core must be taken into account. Here, we vary the hydrophobic core of bilayer membranes and observe different types of behavior in high-throughput wide-field second harmonic imaging. Ca2+ translocation is observed through mono-unsaturated (DOPC:DOPA) membranes, reduced upon the addition of cholesterol, and completely inhibited for branched (DPhPC:DPhPA) and poly-unsaturated (SLPC:SLPA) lipid membranes. We propose, using molecular dynamics simulations, that ion transport occurs through ion-induced transient pores, which requires nonequilibrium membrane restructuring. This results in different rates at different locations and suggests that the hydrophobic structure of lipids plays a much more sophisticated regulating role than previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号