首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The processive phosphorylation mechanism becomes important when there is macromolecular crowding in the cytoplasm. Integrating the processive phosphorylation mechanism with the traditional distributive one, we propose a mixed dual-site phosphorylation (MDP) mechanism in a single-layer phosphorylation cycle. Further, we build a degree model by applying the MDP mechanism to a three-layer mitogen-activated protein kinase (MAPK) cascade. By bifurcation analysis, our study suggests that the crowded-environment-induced pseudoprocessive mechanism can qualitatively change the response of this biological network. By adjusting the degree of processivity in our model, we find that the MAPK cascade is able to switch between the ultrasensitivity, bistability, and oscillatory dynamical states. Sensitivity analysis shows that the theoretical results remain unchanged within a reasonably chosen variation of parameter perturbation. By scaling the reaction rates and also introducing new connections into the kinetic scheme, we further construct a proportion model of the MAPK cascade to validate our findings. Finally, it is illustrated that the spatial propagation of the activated MAPK signal can be improved (or attenuated) by increasing the degree of processivity of kinase (or phosphatase). Our research implies that the MDP mechanism makes the MAPK cascade become a flexible signal module, and the coexistence of processive and distributive phosphorylation mechanisms enhances the tunability of the MAPK cascade.  相似文献   

2.
T4 endonuclease V is a pyrimidine dimer-specific endonuclease which generates incisions in DNA at the sites of pyrimidine dimers by a processive reaction mechanism. A model is presented in which the degree of processivity is directly related to the efficacy of the one-dimensional diffusion of endonuclease V on DNA by which the enzyme locates pyrimidine dimers. The modulation of the processive nicking activity of T4 endonuclease V on superhelical covalently closed circular DNA (form I) which contains pyrimidine dimers has been investigated as a function of the ionic strength of the reaction. Agarose gel electrophoresis was used to separate the three topological forms of the DNA which were generated in time course reactions of endonuclease V with dimer-containing form I DNA in the absence of NaCl, and in 25, 50, and 100 mM NaCl. The degree of processivity was evaluated in terms of the mass fraction of form III (linear) DNA which was produced as a function of the fraction of form I DNA remaining. Processivity is maximal in the absence of NaCl and decreases as the NaCl concentration is increased. At 100 mM NaCl, processivity is abolished and endonuclease V generates incisions in DNA at the site of dimers by a distributive reaction mechanism. The change from the distributive to a processive reaction mechanism occurs at NaCl concentrations slightly below 50 mM. The high degree of processivity which is observed in the absence of NaCl is reversible to the distributive mechanism, as demonstrated by experiments in which the NaCl concentration was increased during the time course reaction. In addition, unirradiated DNA inhibited the incision of irradiated DNA only at NaCl concentrations at which processivity was observed.  相似文献   

3.
4.
The mitogen-activated protein kinase (MAPK) is a pivotal point of convergence for many signaling pathways in eukaryotes. In the classical MAPK cascade, a signal is transmitted via sequential phosphorylation and activation of MAPK kinase kinase, MAPK kinase (MKK), and MAPK. The activation of MAPK is dependent on dual phosphorylation of a TXY motif by an MKK, which is considered the sole kinase to phosphorylate and activate MAPK. Here, we report a novel regulatory mechanism of MAPK phosphorylation and activation besides the canonical MAPK cascade. A rice (Oryza sativa) calcium-dependent protein kinase (CDPK), CPK18, was identified as an upstream kinase of MAPK (MPK5) in vitro and in vivo. Curiously, CPK18 was shown to phosphorylate and activate MPK5 without affecting the phosphorylation of its TXY motif. Instead, CPK18 was found to predominantly phosphorylate two Thr residues (Thr-14 and Thr-32) that are widely conserved in MAPKs from land plants. Further analyses reveal that the newly identified CPK18-MPK5 pathway represses defense gene expression and negatively regulates rice blast resistance. Our results suggest that land plants have evolved an MKK-independent phosphorylation pathway that directly connects calcium signaling to the MAPK machinery.  相似文献   

5.
6.
Mitogen-activated protein kinase (MAPK) cascades can operate as bistable switches residing in either of two different stable states. MAPK cascades are often embedded in positive feedback loops, which are considered to be a prerequisite for bistable behavior. Here we demonstrate that in the absence of any imposed feedback regulation, bistability and hysteresis can arise solely from a distributive kinetic mechanism of the two-site MAPK phosphorylation and dephosphorylation. Importantly, the reported kinetic properties of the kinase (MEK) and phosphatase (MKP3) of extracellular signal-regulated kinase (ERK) fulfill the essential requirements for generating a bistable switch at a single MAPK cascade level. Likewise, a cycle where multisite phosphorylations are performed by different kinases, but dephosphorylation reactions are catalyzed by the same phosphatase, can also exhibit bistability and hysteresis. Hence, bistability induced by multisite covalent modification may be a widespread mechanism of the control of protein activity.  相似文献   

7.
Ever since reversible protein phosphorylation was discovered, it has been clear that it plays a key role in the regulation of cellular processes. Proteins often undergo double phosphorylation, which can occur through two possible mechanisms: distributive or processive. Which phosphorylation mechanism is chosen for a particular cellular regulation bears biological significance, and it is therefore in our interest to understand these mechanisms. In this paper we study dynamics of the MEK/ERK phosphorylation. We employ a model selection algorithm based on approximate Bayesian computation to elucidate phosphorylation dynamics from quantitative time course data obtained from PC12 cells in vivo. The algorithm infers the posterior distribution over four proposed models for phosphorylation and dephosphorylation dynamics, and this distribution indicates the amount of support given to each model. We evaluate the robustness of our inferential framework by systematically exploring different ways of parameterizing the models and for different prior specifications. The models with the highest inferred posterior probability are the two models employing distributive dephosphorylation, whereas we are unable to choose decisively between the processive and distributive phosphorylation mechanisms.  相似文献   

8.
Scott MP  Miller WT 《Biochemistry》2000,39(47):14531-14537
The Src homology 2 (SH2) and Src homology 3 (SH3) domains of Src family kinases are involved in substrate recognition in vivo. Many cellular substrates of Src kinases contain a large number of potential phosphorylation sites, and the SH2 and SH3 domains of Src are known to be required for phosphorylation of these substrates. In principle, Src could phosphorylate these substrates by either a processive mechanism, in which the enzyme remains bound to the peptide substrate during multiple phosphorylation events, or a nonprocessive (distributive) mechanism, where each phosphorylation requires a separate binding interaction between enzyme and substrate. Here we use a synthetic peptide system to demonstrate that Hck, a Src family kinase, can phosphorylate substrates containing an SH2 domain ligand by a processive mechanism. Hck catalyzes the phosphorylation of these sites in a defined order. Furthermore, we show that addition of an SH3 domain to a peptide can enhance its phosphorylation both by activating Hck and by increasing the affinity of the substrate. On the basis of our observations on the role of the SH2 and SH3 domains in substrate recognition, we present a model for substrate targeting in vivo.  相似文献   

9.
Regulation of melanosome movement by MAP kinase   总被引:2,自引:0,他引:2  
Our objectives were to further characterize the signaling pathways in melatonin-induced aggregation in Xenopus melanophores, specifically to investigate a possible role of mitogen-activated protein kinase (MAPK). By Western blotting we found that melatonin activates MAPK, which precedes melanosome aggregation measured in a microplate reader. Activation of MAPK, tyrosine phosphorylation of a previously described 280-kDa protein, and melanosome aggregation are sensitive to PD98059, a selective inhibitor of MAPK kinase. The MAPK activation is also decreased by the adenylate cyclase stimulant forskolin. In summary, we found that MAPK is activated during melatonin-induced melanosome aggregation. Activation was decreased by an inhibitor of MAPK kinase, and by forskolin. In addition to inhibition of cyclic adenosine 3',5'-monophosphate (cAMP), reduction in protein kinase A activity (PKA), and activation of protein phosphatase 2A, we suggest that melatonin receptors activate the MAPK cascade and tyrosine phosphorylation of the 280-kDa protein. Although the cAMP/PKA signaling pathway is the most prominent, our data suggest that simultaneous activation of the MAPK cascade is of importance to obtain a completely aggregated state. This new regulatory mechanism of organelle transport by the MAPK cascade might be important in other eukaryotic cells.  相似文献   

10.
Protein kinases regulate a broad array of cellular processes and do so through the phosphorylation of one or more sites within a given substrate. Many protein kinases are themselves regulated through multisite phosphorylation, and the addition or removal of phosphates can occur in a sequential (processive) or a stepwise (distributive) manner. Here we measured the relative abundance of the monophosphorylated and dual-phosphorylated forms of Fus3, a member of the mitogen-activated protein kinase (MAPK) family in yeast. We found that upon activation with pheromone, a substantial proportion of Fus3 accumulates in the monophosphorylated state. Introduction of an additional copy of Fus3 lacking either phosphorylation site leads to dampened signaling. Conversely, cells lacking the dual-specificity phosphatase (msg5Δ) or that are deficient in docking to the MAPK-scaffold (Ste5ND) accumulate a greater proportion of dual-phosphorylated Fus3. The double mutant exhibits a synergistic, or “synthetic,” supersensitivity to pheromone. Finally, we present a predictive computational model that combines MAPK scaffold and phosphatase activities and is sufficient to account for the observed MAPK profiles. These results indicate that the monophosphorylated and dual-phosphorylated forms of the MAPK act in opposition to one another. Moreover, they reveal a new mechanism by which the MAPK scaffold acts dynamically to regulate signaling.  相似文献   

11.
植物MAPK级联途径参与调控ABA信号转导   总被引:3,自引:0,他引:3  
促分裂原活化蛋白激酶(MAPK)级联途径信号通路在真核生物细胞信号的转换和放大过程中起重要作用。MAPK级联途径由三个成员组成,分别是MAPK、MAPKK及MAPKKK,此三个信号组分按照MAPKKK-MAPKK-MAPK的方式依次磷酸化将外源信号级联放大向下传递。大量研究表明,植物MAPK级联途径参与调控脱落酸(ABA)信号转导。因此,该文就ABA和MAPK的生物学功能、ABA信号转导中的磷酸化与去磷酸化以及MAPK级联途径与ABA信号转导之间的关系等方面的研究进展进行综述,以便进一步认识MAPK和ABA信号转导的分子机制。  相似文献   

12.
Feinberg's chemical reaction network theory (CRNT) connects the structure of a biochemical reaction network to qualitative properties of the corresponding system of ordinary differential equations. No information about parameter values is needed. As such, it seems to be well suited for application in systems biology, where parameter uncertainty is predominant. However, its application in this area is rare. To demonstrate the potential benefits from its application, different reaction networks representing a single layer of the well-studied mitogen-activated protein kinase (MAPK) cascade are analysed. Recent results from Markevich et al. (2004) show that, unexpectedly, multilayered protein kinase cascades can exhibit multistationarity, even on a single cascade level. Using CRNT, we show that their assumption of a distributive mechanism for double phosphorylation and dephosphorylation is crucial for multistationarity on the single cascade level.  相似文献   

13.
Genetic studies on endoderm-mesoderm specification in Caenorhabditis elegans have demonstrated a role for several Wnt cascade components as well as for a MAPK-like pathway in this process. The latter pathway includes the MAPK kinase kinase-like MOM-4/Tak1, its adaptor TAP-1/Tab1, and the MAPK-like LIT-1/Nemo-like kinase. A model has been proposed in which the Tak1 kinase cascade counteracts the Wnt cascade at the level of beta-catenin/TCF phosphorylation. In this model, the signal that activates the Tak1 kinase cascade is unknown. As an alternative explanation of these genetic data, we have explored whether Tak1 is directly activated by Wnt. We find that Wnt1 stimulation results in autophosphorylation and activation of MOM-4/Tak1 in a TAP-1/Tab1-dependent fashion. Wnt1-induced Tak1 stimulation activates Nemo-like kinase, resulting in the phosphorylation of TCF. Our results combined with the genetic data from C. elegans imply a mechanism whereby Wnt directly activates the MOM-4/Tak1 kinase signaling pathway. Thus, Wnt signal transduction through the canonical pathway activates beta-catenin/TCF, whereas Wnt signal transduction through the Tak1 pathway phosphorylates and inhibits TCF, which might function as a feedback mechanism.  相似文献   

14.
Cell fate decisions are regulated by the coordinated activation of signalling pathways such as the extracellular signal‐regulated kinase (ERK) cascade, but contributions of individual kinase isoforms are mostly unknown. By combining quantitative data from erythropoietin‐induced pathway activation in primary erythroid progenitor (colony‐forming unit erythroid stage, CFU‐E) cells with mathematical modelling, we predicted and experimentally confirmed a distributive ERK phosphorylation mechanism in CFU‐E cells. Model analysis showed bow‐tie‐shaped signal processing and inherently transient signalling for cytokine‐induced ERK signalling. Sensitivity analysis predicted that, through a feedback‐mediated process, increasing one ERK isoform reduces activation of the other isoform, which was verified by protein over‐expression. We calculated ERK activation for biochemically not addressable but physiologically relevant ligand concentrations showing that double‐phosphorylated ERK1 attenuates proliferation beyond a certain activation level, whereas activated ERK2 enhances proliferation with saturation kinetics. Thus, we provide a quantitative link between earlier unobservable signalling dynamics and cell fate decisions.  相似文献   

15.
16.
ABSTRACT: BACKGROUND: The three layer mitogen activated protein kinase (MAPK) signaling cascade exhibits different designs of interactions between its kinases and phosphatases. While the sequential interactions between the three kinases of the cascade are tightly preserved, the phosphatases of the cascade, such as MKP3 and PP2A, exhibit relatively diverse interactions with their substrate kinases. Additionally, the kinases of the MAPK cascade can also sequester their phosphatases. Thus, each topologically distinct interaction design of kinases and phosphatases could exhibit unique signal processing characteristics, and the presence of phosphatase sequestration may lead to further fine tuning of the propagated signal. RESULTS: We have built four models of the MAPK cascade, each model with identical kinase-kinase interactions but unique kinases-phosphatases interactions. Our simulations unravelled that MAPK cascade's robustness to external perturbations is a function of nature of interaction between its kinases and phosphatases. The cascade's output robustness was enhanced when phosphatases were sequestrated by their target kinases. We uncovered a novel implicit/hidden negative feedback loop from the phosphatase MKP3 to its upstream kinase Raf-1, in a cascade resembling the B cell MAPK cascade. Notably, strength of the feedback loop was reciprocal to the strength of phosphatases' sequestration and stronger sequestration abolished the feedback loop completely. An experimental method to verify the presence of the feedback loop is also proposed. We further showed, when the models were activated by transient signal, memory (total time taken by the cascade output to reach its unstimulated level after removal of signal) of a cascade was determined by the specific designs of interaction among its kinases and phosphatases. CONCLUSIONS: Differences in interaction designs among the kinases and phosphatases can differentially shape the robustness and signal response behaviour of the MAPK cascade and phosphatase sequestration dramatically enhances the robustness to perturbations in each of the cascade. An implicit negative feedback loop was uncovered from our analysis and we found that strength of the negative feedback loop is reciprocally related to the strength of phosphatase sequestration. Duration of output phosphorylation in response to a transient signal was also found to be determined by the individual cascade's kinase-phosphatase interaction design.  相似文献   

17.
Cd induces oxidative stress and apoptosis in various cells by activating mitogen-activated protein kinases (MAPKs), but the precise signaling components of the MAPK cascade and their role in neuronal apoptosis are still unclear. Here, we report that Cd treatment of SH-SY5Y cells caused apoptosis through sequential phosphorylation of the apoptosis signal regulating kinase 1, MAPK kinase 4, c-Jun N-terminal kinase (JNK), and c-Jun as determined by overexpression of dominant negative (DN) constructs of these genes or using a specific JNK inhibitor SP600125. Both Cd-induced JNK and c-Jun phosphorylation and apoptosis were inhibited dramatically by N-acetyl-L-cysteine, a free radical scavenger. In addition, caspase inhibitors, zDEVD and zVAD, reduced apoptosis but not JNK and c-Jun phosphorylation induced by Cd, while overexpression of DN JNK1 inhibited caspase-3 activity. Taken together, our data suggested that the JNK/c-Jun signaling cascade plays a crucial role in Cd-induced neuronal cell apoptosis and provides a molecular linkage between oxidative stress and neuronal apoptosis.  相似文献   

18.
Murine embryonic palate mesenchyme (MEPM) cells are responsive to a number of endogenous factors found in the local embryonic tissue environment. Recently, it was shown that activation of the cyclic AMP (cAMP) or the transforming growth factor β (TGFβ) signal transduction pathways modulates the proliferative response of MEPM cells to epidermal growth factor (EGF). Since the mitogen-activated protein kinase (MAPK) cascade is a signal transduction pathway that mediates cellular responsiveness to EGF, we examined the possibility that several signaling pathways which abrogate EGF-stimulated proliferation do so via the p42/p44 MAPK signaling pathway. We demonstrate that EGF stimulates MAPK phosphorylation and activity in MEPM cells maximally at 5 minutes. Tyrosine phosphorylation and activation of MAPK was unaffected by treatment of MEPM cells with TGFβ or cholera toxin. Similarly, TGFβ altered neither EGF-induced MAPK tyrosine phosphorylation nor activity. However, the calcium ionophore, A23187, significantly increased MAPK phosphorylation which was further increased in the presence of EGF, although calcium mobilization reduced EGF-induced proliferation. Despite the increase in phosphorylation, we could not demonstrate induction of MAPK activity by A23187. Like EGF, phorbol ester, under conditions which activate PKC isozymes in MEPM cells, increased MAPK phosphorylation and activity but was also growth inhibitory to MEPM cells. The MEK inhibitor, PD098059, only partially abrogated EGF-induced phosphorylation. Likewise, depletion of PKC isozymes partially abrogated EGF-induced MAPK phosphorylation. Inhibition of both MEK and PKC isozymes resulted in a marked decrease in MAPK activity, confirming that EGF uses multiple pathways to stimulate MAPK activity. These data indicate that the MAPK cascade does not mediate signal transduction of several agents that inhibit growth in MEPM cells, and that there is a dissociation of the proliferative response and MAP kinase activation. Furthermore, other signaling pathways known to play significant roles in differentiation of palatal tissue converge with the MAPK cascade and may use this pathway in the regulation of alternative cellular processes. J. Cell. Physiol. 176:266–280, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
It has been suggested that A(3) adenosine receptors (ARs) play a role in the pathophysiology of cerebral ischemia with dual and opposite neuroprotective and neurodegenerative effects. This could be due to a receptor regulation mediated by rapid phosphorylation and desensitization carried out by intracellular kinases. In this study, we investigated the involvement of extracellular regulated kinase (ERK 1 and 2), members of the mitogen-activated protein kinase (MAPK) family, in A(3) AR phosphorylation. A(3) AR mediated the activation of ERK 1/2 with a typical transient monophasic kinetics (5 min). The activation was not affected by hypertonic sucrose cell pre-treatment, suggesting that this effect occurred independently of receptor internalization. The involvement of MAPK cascade in the A(3) AR regulation process was evaluated using two well-characterized MAPK kinase inhibitors, PD98059 (2-(2'-amino-3'-methoxyphenyl)oxanaphthalen-4-one) and U0126 (1,4-diamino-2,3-dicyano-1,4-bis (aminophenylthio) butadiene). The exposure of cells to PD98059 prevented MAPK activation and inhibited homologous A(3) AR desensitization and internalization, impairing agonist-mediated receptor phosphorylation. PD98059 inhibited the membrane translocation of G protein-coupled receptor kinase (GRK(2)), which is involved in A(3) AR homologous phosphorylation, suggesting this kinase as a target for the MAPK cascade.On the contrary, the chemically unrelated inhibitor of the MAPK cascade, U0126, did not significantly affect GRK(2) membrane translocation or receptor internalization. Nevertheless, the inhibitor induced a significant impairment of receptor phosphorylation and desensitization. These results suggested that the MAPK cascade is involved in A(3) AR regulation by a feedback mechanism which controls GRK(2) activity and probably involves a direct receptor phosphorylation.  相似文献   

20.
Functional organization of signal transduction into protein phosphorylation cascades, such as the mitogen-activated protein kinase (MAPK) cascades, greatly enhances the sensitivity of cellular targets to external stimuli. The sensitivity increases multiplicatively with the number of cascade levels, so that a tiny change in a stimulus results in a large change in the response, the phenomenon referred to as ultrasensitivity. In a variety of cell types, the MAPK cascades are imbedded in long feedback loops, positive or negative, depending on whether the terminal kinase stimulates or inhibits the activation of the initial level. Here we demonstrate that a negative feedback loop combined with intrinsic ultrasensitivity of the MAPK cascade can bring about sustained oscillations in MAPK phosphorylation. Based on recent kinetic data on the MAPK cascades, we predict that the period of oscillations can range from minutes to hours. The phosphorylation level can vary between the base level and almost 100% of the total protein. The oscillations of the phosphorylation cascades and slow protein diffusion in the cytoplasm can lead to intracellular waves of phospho-proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号