首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nuclear receptor retinoid X receptor (RXR) functions potently in the regulation of homeostasis and cell development, while rexinoids as RXR agonists have proved their therapeutic potential in the treatment of metabolic diseases and cancer. Here, the natural product bigelovin was identified as a selective RXRα agonist. Interestingly, this compound could not transactivate RXRα:RXRα homodimer but could enhance the transactivation of RXRα:peroxisome proliferator-activated receptor γ heterodimer and repress that of RXRα:liver X receptor (LXR) α heterodimer, while it had no effects on RXRα:farnesoid X receptor heterodimer. Considering that the effective role of LXR response element involved transactivation of sterol regulatory element-binding protein-1c mediated by RXRα:LXRα in triglyceride elevation, such LXR response element repressing by bigelovin has obviously addressed its potency for further research. Moreover, our determined crystal structure of the bigelovin-activated RXRα ligand-binding domain with the coactivator human steroid receptor coactivator-1 peptide revealed that bigelovin adopted a distinct binding mode. Compared with the known RXR ligands, bigelovin lacks the acidic moiety in structure, which indicated that the acidic moiety rendered little effects on RXR activation. Our results have thereby provided new insights into the structure-based selective rexinoids design with bigelovin as a potential lead compound.  相似文献   

2.
Chronic griseofulvin (GF) feeding induces preneoplastic foci followed by hepatocellular carcinoma in the mouse liver. Our previous study suggested that GF-induced hepatocellular proliferation had a different mechanism from that of peroxisome proliferator (PP)–induced direct hyperplasia. The GF-induced hepatocellular proliferation was mediated through activation of immediate early genes such as Fos, Jun, Myc, and NFκB. In contrast, PP-induced direct hyperplasia does not involve activation of any of these immediate early genes. It has been shown that nuclear hormone receptors including peroxisome proliferator activated receptors (PPARs) and retinoid x receptors (RXRs) play important roles in mediating the pleiotropic effects of PPs. To examine the possible roles of PPARs and RXRs during non-PP-induced hepatocellular proliferation and the interaction between PP and non-PP-induced proliferation, we have studied the expression of the PPAR and RXR genes in the GF model using northern blot hybridizations and gel retardation assays. The data showed that the expression of PPARα and RXRα genes was down-regulated in the livers containing preneoplastic nodules and in the liver tumors induced by GF. The mRNA down-regulation was accompanied by a decrease in the amount of nuclear protein–bound to peroxisome proliferator and retinoic acid responsive elements. Down-regulation was also associated with the suppressed expression of the PPARα/RXRα target genes (i.e., acyl-Co oxidase and cytochrome P450 4A1) and the catalase gene. The RXRγ gene was also down-regulated, but the RARα, β, and γ and PPARβ and γ genes were up-regulated. These results indicated that the hepatocarcinogenesis induced by GF is accompanied by suppression of the PPARα/RXRα-mediated direct hyperplasia pathway. The differential expression of these nuclear hormone receptors reveals a new aspect for understanding the individual roles and intercommunication of PPAR, RXR, and RAR isoforms in the liver. J. Cell. Biochem. 69:189–200, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
4.
Mononuclear cell migration into the vascular subendothelium constitutes an early event of the atherogenic process. Because the effect of retinoid X receptor (RXR)α on arterial mononuclear leukocyte recruitment is poorly understood, this study investigated whether RXR agonists can affect this response and the underlying mechanisms involved. Decreased RXRα expression was detected after 4 h stimulation of human umbilical arterial endothelial cells with TNF-α. Interestingly, under physiological flow conditions, TNF-α-induced endothelial adhesion of human mononuclear cells was concentration-dependently inhibited by preincubation of the human umbilical arterial endothelial cells with RXR agonists such as bexarotene or 9-cis-retinoid acid. RXR agonists also prevented TNF-α-induced VCAM-1 and ICAM-1 expression, as well as endothelial growth-related oncogene-α and MCP-1 release. Suppression of RXRα expression with a small interfering RNA abrogated these responses. Furthermore, inhibition of MAPKs and NF-κB pathways were involved in these events. RXR agonist-induced antileukocyte adhesive effects seemed to be mediated via RXRα/peroxisome proliferator-activated receptor (PPAR)γ interaction, since endothelial PPARγ silencing abolished their inhibitory responses. Furthermore, RXR agonists increased RXR/PPARγ interaction, and combinations of suboptimal concentrations of both nuclear receptor ligands inhibited TNF-α-induced mononuclear leukocyte arrest by 60-65%. In vivo, bexarotene dose-dependently inhibited TNF-α-induced leukocyte adhesion to the murine cremasteric arterioles and decreased VCAM-1 and ICAM-1 expression. Therefore, these results reveal that RXR agonists can inhibit the initial inflammatory response that precedes the atherogenic process by targeting different steps of the mononuclear recruitment cascade. Thus, RXR agonists may constitute a new therapeutic tool in the control of the inflammatory process associated with cardiovascular disease.  相似文献   

5.
Increased systemic level of inflammatory cytokines leads to numerous age-related diseases. In senescent macrophages, elevated prostaglandin E2 (PGE2) production contributes to the suppression of T cell function with aging, which increases the susceptibility to infections. However, the regulation of these inflammatory cytokines and PGE2 with aging still remains unclear. We have verified that cyclooxygenase (COX)-2 expression and PGE2 production are higher in LPS-stimulated macrophages from old mice than that from young mice. Downregulation of RXRα, a nuclear receptor that can suppress NF-κB activity, mediates the elevation of COX2 expression and PGE2 production in senescent macrophages. We also have found less induction of ABCA1 and ABCG1 by RXRα agonist in senescent macrophages, which partially accounts for high risk of atherosclerosis in aged population. Systemic treatment with RXRα antagonist HX531 in young mice increases COX2, TNF-α, and IL-6 expression in splenocytes. Our study not only has outlined a mechanism of elevated NF-κB activity and PGE2 production in senescent macrophages, but also provides RXRα as a potential therapeutic target for treating the age-related diseases.  相似文献   

6.
Y Liu  F Chen  S Wang  X Guo  P Shi  W Wang  B Xu 《Cell death & disease》2013,4(12):e948
Leukemia stem cells (LSCs) are considered to be the main reason for relapse and are also regarded as a major hurdle for the success of acute myeloid leukemia chemotherapy. Thus, new drugs targeting LSCs are urgently needed. Triptolide (TPL) is cytotoxic to LSCs. Low dose of TPL enhances the cytotoxicity of idarubicin (IDA) in LSCs. In this study, the ability of TPL to induce apoptosis in leukemic stem cell (LSC)-like cells derived from acute myeloid leukemia cell line KG1a was investigated. LSC-like cells sorted from KG1a were subjected to cell cycle analysis and different treatments, and then followed by in vitro methyl thiazole tetrazolium bromide cytotoxicity assay. The effects of different drug combinations on cell viability, intracellular reactive-oxygen species (ROS) activity, colony-forming ability and apoptotic status were also examined. Combination index-isobologram analysis indicates a synergistic effect between TPL and IDA, which inhibits the colony-forming ability of LSC-like cells and induces their apoptosis. We further investigated the expression of Nrf2, HIF-1α and their downstream target genes. LSC-like cells treated with both TPL and IDA have increased levels of ROS, decreased expression of Nrf2 and HIF-1α pathways. Our findings indicate that the synergistic cytotoxicity of TPL and IDA in LSCs-like cells may attribute to both induction of ROS and inhibition of the Nrf2 and HIF-1α pathways.  相似文献   

7.
8.
9.
The therapeutic goal in treating cerebral ischemia is to reduce the extent of brain injury and thus minimize neurological impairment. We examined the effects of p-hydroxybenzyl alcohol (HBA), an active component of Gastrodia elata Blume, on transient focal cerebral ischemia-induced brain injury with respect to the involvement of protein disulphide isomerase (PDI), nuclear factor-E2-related factor 2 (Nrf2), and neurotrophic factors. All animals were ovariectomized 14 days before ischemic injury. Ischemic injury was induced for 1 h by middle cerebral artery occlusion (MCAO) followed by 24-h reperfusion. Three days before MCAO, the vehicle-treated and the HBA-treated groups received intramuscular sesame oil and HBA (25 mg/kg BW), respectively. 2,3,5-Triphenyltetrazolium chloride (TTC) staining showed decreased infarct volume in the ischemic lesion of HBA-treated animals. HBA pretreatment also promoted functional recovery, as measured by the modified neurological severity score (mNSS; p < 0.05). Moreover, expression of PDI, Nrf2, BDNF, GDNF, and MBP genes increased by HBA treatment. In vitro, H2O2-induced PC12 cell death was prevented by 24 h HBA treatment, but bacitracin, a PDI inhibitor, attenuated this cytoprotective effect in a dose-dependent manner. HBA treatment for 2 h also induced nuclear translocation of Nrf2, possibly activating the intracellular antioxidative system. These results suggest that HBA protects against brain damage by modulating cytoprotective genes, such as Nrf2 and PDI, and neurotrophic factors.  相似文献   

10.
Cholesterol 7α-hydroxylase (cyp7a) mediates cholesterol elimination in the liver by catalyzing the first and rate-limiting step in the conversion of cholesterol into bile acids. Peroxisome proliferator-activated receptor α (PPARα; NR1C1) and liver X receptor α (LXRα; NR1H3) are two nuclear receptors that stimulate the murine Cyp7a1 gene. Here we report that co-expression of PPARα and LXRα in hepatoma cells abolishes the stimulation of Cyp7a1 gene promoter in response to their respective agonists. PPARα and LXRα form an atypical heterodimer that binds to two directly adjacent hexameric sequences localized within overlapping PPARα and LXRα response elements (termed Site I), antagonizing the interaction of PPARα:retinoid X receptor α (RXRα) or RXRα:LXRα with the Cyp7a1 gene promoter. Mutations within either hexameric sequences that specifically abolished LXRα:PPARα heterodimer binding to the murine Cyp7a1 Site I also relieved promoter inhibition. The LXRα:PPARα heterodimer may be important in coordinating the expression of genes that encode proteins involved in metabolism of fats and cholesterol.  相似文献   

11.
12.
13.
In order to gain a better understanding on the possible role of retinoic acid (RA) on human GH secretion, we have characterized the expression of its nuclear receptors in somatotropic adenoma cell extracts. By immunoblotting with rabbit polyclonal antibodies directed against RARα, β, and γ and RXRα and β, we could only detect the presence of RARα and RXRα proteins. The predominant expression of RXRα was confirmed at the mRNA level by Northern and slot-blot analysis. When then investigated the effect of RA on GH synthesis in cell culture of adenomatous somatotrophs. In cultured cells, RA (1 μM) stimulated GH secretion, increased intracellular GH content and GH mRNA levels within 72 h, suggesting a modulation of GH synthesis by RA. J. Cell. Biochem 65:25–31. © 1997 Wiley-Liss, Inc.  相似文献   

14.
15.
16.
17.
18.
19.
20.
Ethyl pyruvate (EP), a simple ester of pyruvic acid, has been shown to act as an anti-inflammatory molecule under various pathological conditions, such as, during cerebral ischemia and sepsis in animal models. Here, the authors investigated the novel molecular mechanism underlying the anti-oxidative effect of EP in primary astrocyte cultures, particularly with respect to nuclear factor E2-related factor 2 (Nrf2) activation and hemeoxygenase 1 (HO-1) induction. EP was found to induce Nrf2 translocation and the inductions of various genes downstream of Nrf2 and these resulted in the amelioration of the oxidative damage of H(2)O(2). Furthermore, EP dose-dependently suppressed H(2)O(2)-induced astrocyte cell death (12h preincubation with 5mM EP increased cell survival after 1h exposure to 100 μM H(2)O(2) from 32.6±0.7% to 63±1.8%). HO-1 was markedly induced (4.9-fold) in EP-treated primary astrocyte cultures and Nrf2 was found to translocate from the cytosol to the nucleus and bind to the antioxidant response element (ARE) located on HO-1 promoter after EP treatment. siRNA-mediated HO-1 or Nrf2 knockdown and zinc protoporphyrin (ZnPP)-mediated inhibition of HO-1 activity showed that Nrf2 activation and HO-1 induction were responsible for the observed cytoprotective effect of EP, which was found to involve the ERK and Akt signaling pathways. Furthermore, EP-conditioned astrocyte culture media was found to have neuroprotective effects on primary neuronal cultures exposed to oxidative or excitotoxic stress, and this seemed to be mediated by glial cell line-derived neurotrophic factor (GDNF) and glutathione (GSH), which accumulated in EP-treated astrocyte culture media. Interestingly, we also found that in addition to HO-1, EP-induced Nrf2 activation increased the expressions of various anti-oxidant genes, including GST, NQO1, and GCLM. The study shows that EP-mediated Nrf2 activation and HO-1 induction in astrocytes act via autocrine and paracrine mechanisms to confer protective effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号