首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellular membranes separate distinct aqueous compartments, but can be breached by transient hydrophilic pores. A large energetic cost prevents pore formation, which is largely dependent on the composition and structure of the lipid bilayer. The softness of bilayers and the disordered structure of pores make their characterization difficult. We use molecular-dynamics simulations with atomistic detail to study the thermodynamics, kinetics, and mechanism of pore formation and closure in DLPC, DMPC, and DPPC bilayers, with pore formation free energies of 17, 45, and 78 kJ/mol, respectively. By using atomistic computer simulations, we are able to determine not only the free energy for pore formation, but also the enthalpy and entropy, which yields what is believed to be significant new insights in the molecular driving forces behind membrane defects. The free energy cost for pore formation is due to a large unfavorable entropic contribution and a favorable change in enthalpy. Changes in hydrogen bonding patterns occur, with increased lipid-water interactions, and fewer water-water hydrogen bonds, but the total number of overall hydrogen bonds is constant. Equilibrium pore formation is directly observed in the thin DLPC lipid bilayer. Multiple long timescale simulations of pore closure are used to predict pore lifetimes. Our results are important for biological applications, including the activity of antimicrobial peptides and a better understanding of membrane protein folding, and improve our understanding of the fundamental physicochemical nature of membranes.  相似文献   

2.
We present an experimental study of the pore formation processes of small amphipathic peptides in model phosphocholine lipid membranes. We used atomic force microscopy to characterize the spatial organization and structure of alamethicin- and melittin-induced defects in lipid bilayer membranes and the influence of the peptide on local membrane properties. Alamethicin induced holes in gel DPPC membranes were directly visualized at different peptide concentrations. We found that the thermodynamic state of lipids in gel membranes can be influenced by the presence of alamethicin such that nanoscopic domains of fluid lipids form close to the peptide pores, and that the elastic constants of the membrane are altered in their vicinity. Melittin-induced holes were visualized in DPPC and DLPC membranes at room temperature in order to study the influence of the membrane state on the peptide induced hole formation. Also differential scanning calorimetry was used to investigate the effect of alamethicin on the lipid membrane phase behaviour.  相似文献   

3.
We present an experimental study of the pore formation processes of small amphipathic peptides in model phosphocholine lipid membranes. We used atomic force microscopy to characterize the spatial organization and structure of alamethicin- and melittin-induced defects in lipid bilayer membranes and the influence of the peptide on local membrane properties. Alamethicin induced holes in gel DPPC membranes were directly visualized at different peptide concentrations. We found that the thermodynamic state of lipids in gel membranes can be influenced by the presence of alamethicin such that nanoscopic domains of fluid lipids form close to the peptide pores, and that the elastic constants of the membrane are altered in their vicinity. Melittin-induced holes were visualized in DPPC and DLPC membranes at room temperature in order to study the influence of the membrane state on the peptide induced hole formation. Also differential scanning calorimetry was used to investigate the effect of alamethicin on the lipid membrane phase behaviour.  相似文献   

4.
Hydrophilic pores are formed in peptide free lipid bilayers under mechanical stress. It has been proposed that the transport of ionic species across such membranes is largely determined by the existence of such meta-stable hydrophilic pores. To study the properties of these structures and understand the mechanism by which pore expansion leads to membrane rupture, a series of molecular dynamics simulations of a dipalmitoylphosphatidylcholine (DPPC) bilayer have been conducted. The system was simulated in two different states; first, as a bilayer containing a meta-stable pore and second, as an equilibrated bilayer without a pore. Surface tension in both cases was applied to study the formation and stability of hydrophilic pores inside the bilayers. It is observed that below a critical threshold tension of approximately 38 mN/m the pores are stabilized. The minimum radius at which a pore can be stabilized is 0.7 nm. Based on the critical threshold tension the line tension of the bilayer was estimated to be approximately 3 x 10(-11) N, in good agreement with experimental measurements. The flux of water molecules through these stabilized pores was analyzed, and the structure and size of the pores characterized. When the lateral pressure exceeds the threshold tension, the pores become unstable and start to expand causing the rupture of the membrane. In the simulations the mechanical threshold tension necessary to cause rupture of the membrane on a nanosecond timescale is much higher in the case of the equilibrated bilayers, as compared with membranes containing preexisting pores.  相似文献   

5.
The chronological relation between the establishment of lipid continuity and fusion pore formation has been investigated for fusion of cells expressing hemagglutinin (HA) of influenza virus to planar bilayer membranes. Self-quenching concentrations of lipid dye were placed in the planar membrane to monitor lipid mixing, and time-resolved admittance measurements were used to measure fusion pores. For rhodamine-PE, fusion pores always occurred before a detectable amount of dye moved into an HA-expressing cell. However, with DiI in the planar membrane, the relationship was reversed: the spread of dye preceded formation of small pores. In other words, by using DiI as probe, hemifusion was clearly observed to occur before pore formation. For hemifused cells, a small pore could form and subsequently fully enlarge. In contrast, for cells that express a glycosylphosphatidylinositol-anchored ectodomain of HA, hemifusion occurred, but no fully enlarged pores were observed. Therefore, the transmembrane domain of HA is required for the formation of fully enlarging pores. Thus, with the planar bilayer membranes as target, hemifusion can precede pore formation, and the occurrence of lipid dye spread does not preclude formation of pores that can enlarge fully.  相似文献   

6.
Nystatin and amphotericin B induce a cation-selective conductance when added to one side of a lipid bilayer membrane and an anion-selective conductance when added to both sides. The concentrations of antibiotic required for the one-sided action are comparable to those employed on plasma membranes and are considerably larger than those required for the two-sided action. We propose that the two-sided effect results from the formation of aqueous pores formed by the hydrogen bonding in the middle of the bilayer of two "half pores," whereas the one-sided effect results from the half pores alone. We discuss, in terms of the flexibility of bilayer structure and its thickness, how it is possible to have conducting half pores and "complete pores" in the same membrane. The role of sterol (cholesterol and ergosterol) in pore formation is also examined.  相似文献   

7.
Gramicidin A (gA) is a 15-amino-acid antibiotic peptide with an alternating L-D sequence, which forms (dimeric) bilayer-spanning, monovalent cation channels in biological membranes and synthetic bilayers. We performed molecular dynamics simulations of gA dimers and monomers in all-atom, explicit dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), dioleoylphosphatidylcholine (DOPC), and 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers. The variation in acyl chain length among these different phospholipids provides a way to alter gA-bilayer interactions by varying the bilayer hydrophobic thickness, and to determine the influence of hydrophobic mismatch on the structure and dynamics of both gA channels (and monomeric subunits) and the host bilayers. The simulations show that the channel structure varied little with changes in hydrophobic mismatch, and that the lipid bilayer adapts to the bilayer-spanning channel to minimize the exposure of hydrophobic residues. The bilayer thickness, however, did not vary monotonically as a function of radial distance from the channel. In all simulations, there was an initial decrease in thickness within 4–5 Å from the channel, which was followed by an increase in DOPC and POPC or a further decrease in DLPC and DMPC bilayers. The bilayer thickness varied little in the monomer simulations—except one of three independent simulations for DMPC and all three DLPC simulations, where the bilayer thinned to allow a single subunit to form a bilayer-spanning water-permeable pore. The radial dependence of local lipid area and bilayer compressibility is also nonmonotonic in the first shell around gA dimers due to gA-phospholipid interactions and the hydrophobic mismatch. Order parameters, acyl chain dynamics, and diffusion constants also differ between the lipids in the first shell and the bulk. The lipid behaviors in the first shell around gA dimers are more complex than predicted from a simple mismatch model, which has implications for understanding the energetics of membrane protein-lipid interactions.  相似文献   

8.
infrastructurel techniques have shown that an early event in the exocytotic fusion of a secretory vesicle is the formation of a narrow, water-filled pore spanning both the vesicle and plasma membranes and connecting the lumen of the secretory vesicle to the extracellular environment. Smaller precursors of the exocytotic fusion pore have been detected using electrophysio-logical techniques, which reveal a dynamic fusion pore that quickly expands to the size of the pores seen with electron microscopy. While it is clear that in the latter stages of expansion, when the size of the fusion pore is several orders of magnitude bigger than any known macromolecule, the fusion pore must be mainly made of lipids, the structure of the smaller precursors is unknown. Patch-clamp measurements of the activity of individual fusion pores in mast cells have shown that the fusion pore has some unusual and unexpected properties, namely that there is a large flux of lipid through the pore and the rate of pore closure has a discontinuous temperature dependency, suggesting a purely lipidic fusion pore. Moreover, comparisons of experimental data with theoretical fusion pores and with breakdown pores support the view that the fusion pore is initially a pore through a single bilayer, as would be expected for membrane fusion proceeding through a hemifusion mechanism. Based on these observations we present a model where the fusion pore is initially a pore through a single bilayer. Fusion pore formation is regulated by a macromolecular scaffold of proteins that is responsible for bringing the plasma membrane into a highly curved dimple very close to a tense secretory granule membrane, creating the architecture where the strongly attractive hydrophobic force causes the membranes to form a ‘hemifusion’ intermediate. Membrane fusion is completed by the formation of an aqueous pore after rupture of the shared bilayer. We also propose that the microenvironment of the interface when the pore first opens, dominated by the charged groups on the secretory vesicle matrix and phospholipids, will greatly influence the release of secretory products.  相似文献   

9.
Membrane fusion often exhibits slow dynamics in electrophysiological experiments, involving prespike foot and fusion pore-flickering, but the structural basis of such phenomena remains unclear. Hemifusion intermediates have been implicated in the early phase of membrane fusion. To elucidate the dynamics of formation of membrane defects and pores within the hemifusion diaphragm (HD), atomistic and coarse-grained models of hemifusion intermediates were constructed using dipalmitoylphosphatidylcholine or dioleoylphosphatidylcholine membranes. The work necessary to displace a lipid molecule to the hydrophobic core of the bilayer was measured. For a lipid within the HD with radius of 4 nm, the work was ∼80 kJ/mol, similar to that in a planar bilayer. The work was much less (∼40 kJ/mol) when the HD was surrounded by a steep stalk, i.e., stalk wings forming a large angle at the junction of three bilayers. In the latter case, the lipid displacement engendered formation of a pore contacting the HD rim. The work was similarly small (40 kJ/mol) for a small HD of 1.5 nm radius, where a pore formed and grew rapidly, quickly generating a toroidal structure (<40 ns). Combining the steep stalk and the small HD decreased the work further, although quantitative analysis was difficult because the latter system was not in a stable equilibrium state. Results suggest that fine tuning of fusion dynamics requires strict control of the HD size and the angle between the expanded stalk and HD. In additional free simulations, the steep stalk facilitated widening of a preformed pore contacting the HD rim.  相似文献   

10.
The proteins of the outer membrane from rat liver mitochondria have been subfractionated by means of density gradient centrifugation. The different polypeptides of the membrane were incorporated into asolectin vesicles and black lipid membranes. It was observed that a polypeptide of Mr 32 000 renders asolectin vesicles permeable to ADP and forms pores in bilayer membrane. These pores showed the same properties as the channels which are formed in the lipid membrane after addition of Triton X-100 solubilized complete outer membrane. The properties of the pore are as follows: (1) The formation of pores depends on the type of phospholipid used for the preparation of the black membranes. (2) The pore is inserted asymmetrically into the membrane. (3) The pore is voltage gated but does not switch off completely at higher voltages. The pore seems to show different conductance states decreasing conductance being observed at increasing voltage. The implications of these findings for the regulation of transport processes across the outer membrane are discussed.  相似文献   

11.
The disaccharide trehalose is well known for its bioprotective properties. Produced in large amounts during stress periods in the life of organisms able to survive potentially damaging conditions, trehalose plays its protective role by stabilizing biostructures such as proteins and lipid membranes. In this study, molecular dynamics simulations are used to investigate the interaction of trehalose with a phospholipid bilayer at atomistic resolution. Simulations of the bilayer in the absence and in the presence of trehalose at two different concentrations (1 or 2 molal) are carried out at 325 K and 475 K. The results show that trehalose is able to minimize the disruptive effect of the elevated temperature and stabilize the bilayer structure. At both temperature, trehalose is found to interact directly with the bilayer through hydrogen bonds. However, the water molecules at the bilayer surface are not completely replaced. At high temperature, the protective effect of trehalose is correlated with a significant increase in the number of trehalose-bilayer hydrogen bonds, predominantly through an increase in the number of trehalose molecules bridging three or more lipid molecules.  相似文献   

12.
Electropermeabilization, an electric field-induced modification of the barrier functions of the cell membrane, is widely used in laboratories and increasingly in the clinic; but the mechanisms and physical structures associated with the electromanipulation of membrane permeability have not been definitively characterized. Indirect experimental observations of electrical conductance and small molecule transport as well as molecular dynamics simulations have led to models in which hydrophilic pores form in phospholipid bilayers with increased probability in the presence of an electric field. Presently available methods do not permit the direct, nanoscale examination of electroporated membranes that would confirm the existence of these structures. To facilitate the reconciliation of poration models with the observed properties of electropermeabilized lipid bilayers and cell membranes, we propose a scheme for characterizing the stages of electropore formation and resealing. This electropore life cycle, based on molecular dynamics simulations of phospholipid bilayers, defines a sequence of discrete steps in the electric field-driven restructuring of the membrane that leads to the formation of a head group-lined, aqueous pore and then, after the field is removed, to the dismantling of the pore and reassembly of the intact bilayer. Utilizing this scheme we can systematically analyze the interactions between the electric field and the bilayer components involved in pore initiation, construction and resealing. We find that the pore creation time depends strongly on the electric field gradient across the membrane interface and that the pore annihilation time is at least weakly dependent on the magnitude of the pore-initiating electric field and, in general, much longer than the pore creation time.  相似文献   

13.
Hagfish intestinal antimicrobial peptides (HFIAPs) are a family of polycationic peptides exhibiting potent, broad-spectrum bactericidal activity. In an attempt to unravel the mechanism of action of HFIAPs, we have studied their interaction with model membranes. Synthetic HFIAPs selectively bound to liposomes mimicking bacterial membranes, and caused the release of vesicle-encapsulated fluorescent markers in a size-dependent manner. In planar lipid bilayer membranes, HFIAPs induced erratic current fluctuations and reduced membrane line tension according to a general theory for lipidic pores, suggesting that HFIAP pores contain lipid molecules. Consistent with this notion, lipid transbilayer redistribution accompanied HFIAP pore formation, and membrane monolayer curvature regulated HFIAP pore formation. Based on these studies, we propose that HFIAPs kill target cells, at least in part, by interacting with their plasma membrane to induce formation of lipid-containing pores. Such a membrane-permeabilizing function appears to be an evolutionarily conserved host-defense mechanism of antimicrobial peptides.  相似文献   

14.
Resorcinolic lipids, or resorcinols, are commonly found in plant membranes. They consist of a substituted benzene ring forming the hydrophilic lipid head, attached to an alkyl chain forming the hydrophobic tail. Experimental results show alternative effects of resorcinols on lipid membranes. Depending on whether they are added to lipid solutions before or after the formation of the liposomes, they either stabilize or destabilize these liposomes. Here we use atomistic molecular dynamics simulations to elucidate the molecular nature of this dual effect. Systems composed of either one of three resorcinol homologs, differing in the alkyl tail length, interacting with dimyristoylphosphatidylcholine lipid bilayers were studied. It is shown that resorcinols preincorporated into bilayers induce order within the lipid acyl chains, decrease the hydration of the lipid headgroups, and make the bilayers less permeable to water. In contrast, simulations in which the resorcinols are incorporated from the aqueous solution into a preformed phospholipid bilayer induce local disruption, leading to either transient pore formation or even complete rupture of the membrane. In line with the experimental data, our simulations thus demonstrate that resorcinols can either disturb or stabilize the membrane structure, and offer a detailed view of the underlying molecular mechanism.  相似文献   

15.
We present a quantitative analysis of the effects of hydrophobic matching and membrane-mediated protein-protein interactions exhibited by gramicidin embedded in dimyristoylphosphatidylcholine (DMPC) and dilauroylphosphatidylcholine (DLPC) bilayers (Harroun et al., 1999. Biophys. J. 76:937-945). Incorporating gramicidin, at 1:10 peptide/lipid molar ratio, decreases the phosphate-to-phosphate (PtP) peak separation in the DMPC bilayer from 35.3 A without gramicidin to 32.7 A. In contrast, the same molar ratio of gramicidin in DLPC increases the PtP from 30.8 A to 32.1 A. Concurrently, x-ray in-plane scattering showed that the most probable nearest-neighbor separation between gramicidin channels was 26.8 A in DLPC, but reduced to 23.3 A in DMPC. In this paper we review the idea of hydrophobic matching in which the lipid bilayer deforms to match the hydrophobic surface of the embedded proteins. We use a simple elasticity theory, including thickness compression, tension, and splay terms to describe the membrane deformation. The energy of membrane deformation is compared with the energy cost of hydrophobic mismatch. We discuss the boundary conditions between a gramicidin channel and the lipid bilayer. We used a numerical method to solve the problem of membrane deformation profile in the presence of a high density of gramicidin channels and ran computer simulations of 81 gramicidin channels to find the equilibrium distributions of the channels in the plane of the bilayer. The simulations contain four parameters: bilayer thickness compressibility 1/B, bilayer bending rigidity Kc, the channel-bilayer mismatch Do, and the slope of the interface at the lipid-protein boundary s. B, Kc, and Do were experimentally measured; the only free parameter is s. The value of s is determined by the requirement that the theory produces the experimental values of bilayer thinning by gramicidin and the shift in the peak position of the in-plane scattering due to membrane-mediated channel-channel interactions. We show that both hydrophobic matching and membrane-mediated interactions can be understood by the simple elasticity theory.  相似文献   

16.
To test the hypothesis that water pores in a lipid membrane mediate the proton transport, molecular dynamic simulations of a phospholipid membrane, in which the formation of a water pore is induced, are reported. The probability density of such a pore in the membrane was obtained from the free energy of formation of the pore, which was computed from the average force needed to constrain the pore in the membrane. It was found that the free energy of a single file of water molecules spanning the bilayer is 108(+/-10) kJ/mol. From unconstrained molecular dynamic simulations it was further deduced that the nature of the pore is very transient, with a mean lifetime of a few picoseconds. The orientations of water molecules within the pore were also studied, and the spontaneous translocation of a turning defect was observed. The combined data allowed a permeability coefficient for proton permeation across the membrane to be computed, assuming that a suitable orientation of the water molecules in the pore allows protons to permeate the membrane relatively fast by means of a wirelike conductance mechanism. The computed value fits the experimental data only if it is assumed that the entry of the proton into the pore is not rate limiting.  相似文献   

17.
Monotopic proteins make up a class of membrane proteins that bind tightly to, but do not span, cell membranes. We examine and compare how two monotopic proteins, monoamine oxidase B (MAO-B) and cyclooxygenase-2 (COX-2), interact with a phospholipid bilayer using molecular dynamics simulations. Both enzymes form between three and seven hydrogen bonds with the bilayer in our simulations with basic side chains accounting for the majority of these interactions. By analyzing lipid order parameters, we show that, to a first approximation, COX-2 disrupts only the upper leaflet of the bilayer. In contrast, the top and bottom halves of the lipid tails surrounding MAO-B are more and less ordered, respectively, than in the absence of the protein. Finally, we identify which residues are important in binding individual phospholipids by counting the number and type of lipid atoms that come close to each amino acid residue. The existing models that explain how these proteins bind to bilayers were proposed following inspection of the X-ray crystallographic structures. Our results support these models and suggest that basic residues contribute significantly to the binding of these monotopic proteins to bilayers through the formation of hydrogen bonds with phospholipids.  相似文献   

18.
Antimicrobial peptides interact specifically with the membrane of a pathogen and kill the pathogen by releasing its cellular contents. Protegrin-1 (PG-1), a β-hairpin antimicrobial peptide, is known to exist as a transmembrane monomer in a 1,2-dilauroylphosphatidylcholine (DLPC) bilayer and shows concentration-dependent oligomerization in a 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) bilayer. To examine its structure, dynamics, orientation, and interaction in membranes, we performed comparative molecular dynamics simulations of PG-1 monomer and dimer in DLPC and POPC bilayers for a total of 840 ns. The PG-1 monomer exhibits larger tilting in DLPC than in POPC due to a hydrophobic mismatch. PG-1 tilting is dependent on its rotation angle. The specific orientation of PG-1 in membranes is governed by the interactions of its aromatic residues with lipid headgroups. The calculated 15N and 13CO chemical shifts of Val16 in DLPC reveal that there are different sets of tilt and rotation angles that satisfy the experimental values reasonably, suggesting that more experiments are needed to determine its orientation. The dimer simulations show that the dimer interface is better preserved in POPC than in DLPC because POPC's greater hydrophobic thickness causes reduced flexibility of the C-terminal strands. Both monomer and dimer simulations show membrane thinning around PG-1, largely due to arginine-lipid interactions.  相似文献   

19.
Peptides that self-assemble into nanometer-sized pores in lipid bilayers could have utility in a variety of biotechnological and clinical applications if we can understand their physical chemical properties and learn to control their membrane selectivity. To empower such control, we have used synthetic molecular evolution to identify the pH-dependent delivery peptides, a family of peptides that assemble into macromolecule-sized pores in membranes at low peptide concentration but only at pH < ~6. Further advancements will also require better selectivity for specific membranes. Here, we determine the effect of anionic headgroups and bilayer thickness on the mechanism of action of the pH-dependent delivery peptides by measuring binding, secondary structure, and macromolecular poration. The peptide pHD15 partitions and folds equally well into zwitterionic and anionic membranes but is less potent at pore formation in phosphatidylserine-containing membranes. The peptide also binds and folds similarly in membranes of various thicknesses, but its ability to release macromolecules changes dramatically. It causes potent macromolecular poration in vesicles made from phosphatidylcholine with 14 carbon acyl chains, but macromolecular poration decreases sharply with increasing bilayer thickness and does not occur at any peptide concentration in fluid bilayers made from phosphatidylcholine lipids with 20-carbon acyl chains. The effects of headgroup and bilayer thickness on macromolecular poration cannot be accounted for by the amount of peptide bound but instead reflect an inherent selectivity of the peptide for inserting into the membrane-spanning pore state. Molecular dynamics simulations suggest that the effect of thickness is due to hydrophobic match/mismatch between the membrane-spanning peptide and the bilayer hydrocarbon. This remarkable degree of selectivity based on headgroup and especially bilayer thickness is unusual and suggests ways that pore-forming peptides with exquisite selectivity for specific membranes can be designed or evolved.  相似文献   

20.
NalP is an autotransporter secretory protein found in the outer membrane of Neisseria meningitidis. The crystal structure of the NalP translocator domain revealed a transmembrane β-barrel containing a central α-helix. The role of this α-helix, and of the conformational dynamics of the β-barrel pore have been studied via atomistic molecular dynamics simulations. Three simulations, each of 10 ns duration, of NalP embedded within a solvated DMPC bilayer were performed. The helix was removed from the barrel interior in one simulation. The conformational stability of the protein is similar to that of other outer membrane proteins, e.g., OmpA, in comparable simulations. The transmembrane β-barrel is stable even in the absence of the α-helix. Removal of the helix results in an influx of water into the pore region, suggesting the helix acts as a ‘plug’. Water molecules entering the resultant pore form hydrogen bonds with the barrel lining that compensate for the loss of helix-barrel hydrogen bonds. The dimensions of the pore fluctuate over the course of the simulation revealing it to be flexible, but only wide enough to allow transport of the passenger domain in an unfolded or extended conformation. The simulations help us to understand the role of the central helix in plugging the pore and in maintaining the width of the barrel, and show that the NalP monomer is sufficient for the transport of the passenger domain in an unfolded or extended conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号