首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shi YF  Fong CC  Zhang Q  Cheung PY  Tzang CH  Wu RS  Yang M 《FEBS letters》2007,581(2):203-210
Hypoxia is a common environmental stress factor and is also associated with various physiological and pathological conditions such as fibrogenesis. The activation of hepatic stellate cells (HSCs) is the key event in the liver fibrogenesis. In this study, the behavior of human HSCs LX-2 in low oxygen tension (1% O2) was analyzed. Upon hypoxia, the expression of HIF-1alpha and VEGF gene was induced. The result of Western blotting showed that the expression of alpha-SMA was increased by hypoxic stimulation. Furthermore, the expression of MMP-2 and TIMP-1 genes was increased. Hypoxia also elevated the protein expression of the collagen type I in LX-2 cells. The analysis of TGF-beta/Smad signaling pathway showed that hypoxia potentiated the expression of TGF-beta1 and the phosphorylation status of Smad2. Gene expression profiles of LX-2 cells induced by hypoxia were obtained by using cDNA microarray technique.  相似文献   

2.
Ming Chen  Jiaxing Liu  Wenqi Yang 《Autophagy》2017,13(11):1813-1827
Bacterial translocation and lipopolysaccharide (LPS) leakage occur at a very early stage of liver fibrosis in animal models. We studied the role of LPS in hepatic stellate cell (HSC) activation and the underlying mechanisms in vitro and in vivo. Herein, we demonstrated that LPS treatment led to a dramatic increase in autophagosome formation and autophagic flux in LX-2 cells and HSCs, which was mediated through the AKT-MTOR and AMPK-ULK1 pathway. LPS significantly decreased the lipid content, including the lipid droplet (LD) number and lipid staining area in HSCs; pretreatment with macroautophagy/autophagy inhibitors or silencing ATG5 attenuated this decrease. Furthermore, lipophagy was induced by LPS through the autophagy-lysosomal pathway in LX-2 cells and HSCs. Additionally, LPS-induced autophagy further reduced retinoic acid (RA) signaling, as demonstrated by a decrease in the intracellular RA level and Rar target genes, resulting in the downregulation of Bambi and promoting the sensitization of the HSC's fibrosis response to TGFB. Compared with CCl4 injection alone, CCl4 plus LPS injection exaggerated liver fibrosis in mice, as demonstrated by increased Col1a1 (collagen, type I, α 1), Acta2, Tgfb and Timp1 mRNA expression, ACTA2/α-SMA and COL1A1 protein expression, and Sirius Red staining area, which could be attenuated by injection of an autophagy inhibitor. LPS also reduced lipid content in HSCs in vivo, with this change being attenuated by chloroquine (CQ) administration. In conclusion, LPS-induced autophagy resulted in LD loss, RA signaling dysfunction, and downregulation of the TGFB pseudoreceptor Bambi, thus sensitizing HSCs to TGFB signaling.  相似文献   

3.
Decorin is a small leucine-rich extracellular matrix proteoglycan composed of a core protein with a single glycosaminoglycan (GAG) chain near the N-terminus and N-glycosylated at three potential sites. Decorin is involved in the regulation of formation and organization of collagen fibrils, modulation of the activity of growth factors such as transforming growth factor β (TGF-β), and exerts other effects on cell proliferation and behavior. Increasing evidences show that decorin plays an important role in fibrogenesis by regulating TGF-β, a key stimulator of fibrosis, and by directly modulating the degradation of extracellular matrix (ECM) from activated hepatic stellate cells (HSCs). In this study, the core protein of human decorin was cloned and expressed in Escherichia coli. The purified recombinant human decorin (rhDecorin) significantly inhibited the proliferation of LX-2 cells, a human HSC cell line, stimulated by TGF-β1. RT-PCR result showed that the expression of metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were reduced by rhDecorin in LX-2 cells stimulated by TGF-β1. Furthermore, the protein expression of smooth muscle-α-actin (α-SMA), collagen type III and phosphorylated Smad2 (p-Smad2) was significantly decreased in the presence of rhDecorin. rhDecorin also reduced fibrillogenesis of collagen type I in a dose-dependent manner. Gene expression profiles of LX-2 cells stimulated by TGF-β1 in the presence and the absence of rhDecorin were obtained by using cDNA microarray technique and differentially expressed genes were identified to provide further insight into the molecular action mechanism of decorin on LX-2 cells.  相似文献   

4.
Qin Y  Zhong Y  Dang L  Zhu M  Yu H  Chen W  Cui J  Bian H  Li Z 《Journal of Proteomics》2012,75(13):4114-4123
Although aberrant glycosylation of human glycoproteins is related to liver fibrosis that results from chronic damage to the liver in conjunction with the activation of hepatic stellate cells (HSCs), little is known about the precision alteration of protein glycosylation referred to the activation of HSCs by transforming growth factor-β1 (TGF-β1). The human HSCs, LX-2 were activated by TGF-β1. The lectin microarrays were used to probe the alteration of protein glycosylation in the activated HSCs compared with the quiescent HSCs. Lectin histochemistry was used to further validate the lectin binding profiles and assess the distribution of glycosidic residues in cells. As a result, 14 lectins (e. g. AAL, PHA-E, ECA and ConA) showed increased signal while 7 lectins (e. g. UEA-I and GNA) showed decreased signal in the activated LX-2 compared with the quiescent LX-2. Meanwhile, AAL, PHA-E and ECA staining showed moderate binding to the cytoplasma membrane in the quiescent LX-2, and the binding intensified in the same regions of the activated LX-2. In conclusion, the precision alteration of protein glycosylation related to the activation of the HSCs may provide useful information to find new molecular mechanism of HSC activation and antifibrotic therapeutic strategies.  相似文献   

5.
间歇性低氧(intermittent hypoxia,IH)可通过氧化应激和炎症反应诱导认知障碍,而不同频率的IH刺激可对特定类型的细胞引起不同结果.因此本研究旨在比较3种频率IH刺激对海马神经元HT22细胞活性的影响,探讨IH刺激损伤神经元的相关分子机制.体外培养HT22细胞,分为对照组和3个不同频率IH刺激组(舱内...  相似文献   

6.
《Reproductive biology》2022,22(4):100677
The hypoxic microenvironment of cryptorchidism is an important factor in the impairment and fibrosis of Sertoli cells which result in blood-testis barrier (BTB) destruction and spermatogenesis loss. Recent studies have shown that melatonin, a well-known pineal hormone exerts beneficial effects against pathological fibrosis in a various of organs. However, it is still unknown whether melatonin can regulate hypoxia-induced fibrosis of Sertoli cells. In this study we evaluate melatonin levels, and its synthesizing enzymes, AANAT and HIOMT expression patterns in canine cryptorchidism and contralateral normal testis. Results show abdominal testes presented low melatonin levels and AANAT and HIOMT expression compared with testes located in the scrotum. Moreover, we established a hypoxia-induced fibrosis model in canine Sertoli cells induced by cobalt chloride (CoCl2) and found that melatonin inhibited the EMT markers expression and ECM production as well as Hif-1α expression of Sertoli cells in a dose-dependent manner. Furthermore, use of Lificiguat (synonyms YC-1, Hif-1α inhibitor) to interfere with the Hif-1α pathway showed a similar effect with melatonin suppression of the fibrosis in Sertoli cells. The results indicate that melatonin supplementation can alleviate the fibrosis process of Sertoli cells caused by hypoxia, which is associated with regulating the inhibition of Hif-1α signaling.  相似文献   

7.
Hepatic stellate cells (HSC) store retinoids and upon activation differentiate into myofibroblast-like cells, a process whereby they lose their retinoid-containing lipid droplets. We reported earlier, activation of tissue factor (TF) in our MCT/LPS hepatotoxicity model. We now report the involvement of TF in the release of retinoid receptors RAR-α and RXR-α as accumulated lipid droplet during monocrotaline/lipopolysaccharide (MCT/LPS)-liver injury. Constitutive expression of RAR-α was observed in HSCs and endothelial cells of bile duct and portal vein, while expression of RXR-α was observed in certain pericentral hepatocytes and HSCs. Administration of sub-toxic doses of MCT or LPS strongly increased TF and RXR-α but not RAR-α expressions in HSCs and hepatocytes. However MCT/LPS co-treatment showed insoluble droplets containing RAR-α and RXR-α in the vicinity of the necrotic areas. Blocking TF with TF antisense oligonucleotides (TF-AS ODN) led to normal hepatocyte expression of RXR-α and upregulated the expression of RAR-α in HSCs. This study shows clear evidence of in vivo release of RAR-α and RXR-α as insoluble lipid droplets in liver injury. It is possible that these insoluble droplets of RAR-α and RXR-α could be used as markers for liver injury in general and activation of HSCs in particular. RXR-α appears to be a more sensitive than RAR-α as it was affected by even the subtoxic doses of MCT or LPS. The fact that TF-AS treatment not only down-regulated TF but also obliterated the release of RAR-α and RXR-α as insoluble lipid droplets in hepatocytes points towards TF being an important regulatory molecule for RAR-α and RXR-α.  相似文献   

8.

Background

Non-alcoholic steatohepatitis (NASH) is a subset of non-alcoholic fatty liver disease, the most common chronic liver disease in the U.S. Fibrosis, a common feature of NASH, results from the dysregulation of fibrogenesis in hepatic stellate cells (HSCs). In this study, we investigated whether astaxanthin (ASTX), a xanthophyll carotenoid, can inhibit fibrogenic effects of transforming growth factor β1 (TGFβ1), a key fibrogenic cytokine, in HSCs.

Methods

Reactive oxygen species (ROS) accumulation was measured in LX-2, an immortalized human HSC cell line. Quantitative realtime PCR, Western blot, immunocytochemical analysis, and in-cell Western blot were performed to determine mRNA and protein of fibrogenic genes, and the activation of Smad3 in TGFβ1-activated LX-2 cells and primary mouse HSCs.

Results

In LX-2 cells, ROS accumulation induced by tert-butyl hydrogen peroxide and TGFβ1 was abolished by ASTX. ASTX significantly decreased TGFβ1-induced α-smooth muscle actin (α-SMA) and procollagen type 1, alpha 1 (Col1A1) mRNA as well as α-SMA protein levels. Knockdown of Smad3 showed the significant role of Smad3 in the expression of α-SMA and Col1A1, but not TGFβ1, in LX-2 cells. ASTX attenuated TGFβ1-induced Smad3 phosphorylation and nuclear translocation with a concomitant inhibition of Smad3, Smad7, TGFβ receptor I (TβRI), and TβRII expression. The inhibitory effect of ASTX on HSC activation was confirmed in primary mouse HSCs as evidenced by decreased mRNA and protein levels of α-SMA during activation.

Conclusion

Taken together, ASTX exerted anti-fibrogenic effects by blocking TGFβ1-signaling, consequently inhibiting the activation of Smad3 pathway in HSCs.

General significance

This study suggests that ASTX may be used as a preventive/therapeutic agent to prevent hepatic fibrosis.  相似文献   

9.
Hepatic stellate cells play a key role in the development of hepatic fibrosis. Activated hepatic stellate cells can be reversed to a quiescent-like state or apoptosis can be induced to reverse fibrosis. Some studies have recently shown that Schistosoma mansoni eggs could suppress the activation of hepatic stellate cells and that soluble egg antigens from schistosome eggs could promote immunocyte apoptosis. Hence, in this study, we attempt to assess the direct effects of Schistosoma japonicum soluble egg antigens on hepatic stellate cell apoptosis, and to explore the mechanism by which the apoptosis of activated hepatic stellate cells can be induced by soluble egg antigens, as well as the mechanism by which hepatic stellate cell activation is inhibited by soluble egg antigens. Here, it was shown that S. japonicum-infected mouse livers had increased apoptosis phenomena and a variability of peroxisome proliferator-activated receptor γ expression. Soluble egg antigens induce morphological changes in the hepatic stellate cell LX-2 cell line, inhibit cell proliferation and induce cell-cycle arrest at the G1 phase. Soluble egg antigens also induce apoptosis in hepatic stellate cells through the TNF-related apoptosis-inducing ligand/death receptor 5 and caspase-dependent pathways. Additionally, soluble egg antigens could inhibit the activation of hepatic stellate cells through peroxisome proliferator-activated receptor γ and the transforming growth factor β signalling pathways. Therefore, our study provides new insights into the anti-fibrotic effects of S. japonicum soluble egg antigens on hepatic stellate cell apoptosis and the underlying mechanism by which the liver fibrosis could be attenuated by soluble egg antigens.  相似文献   

10.
11.
Vascular endothelial growth factor (Vegf) was previously shown to be expressed specifically in the condylar cartilage of temporomandibular joint-osteoarthritis (TMJ-OA) model rats. Here we demonstrate for the first time that hypoxia-inducible factor-1α (Hif-1α) is activated in mature chondrocytes of temporomandibular joint-osteoarthritis (TMJ-OA) model rat by mechanical overload, and that activated Hif-1 in chondrocytes can induce osteoclastogenesis via repression of osteoprotegerin (Opg) expression.In rat TMJs, degeneration of the condylar cartilage became prominent in proportion to the duration of overloading. Hif-1α expression was observed specifically in mature and hypertrophic chondrocytes, and Hif-1α-positivity, level of Vegf expression, and tartrate-resistant acid phosphatase (TRAP)-positive cell numbers all increased in the same manner. When ATDC5 cells induced differentiation by insulin were cultured under hypoxia, Hif-1α induction was observed in mature stage, but not in immature stage. Inductions of Hif-1-target genes showed a similar expression pattern. In addition, expression of Opg decreased in hypoxia, and Hif-1α played a role, in part, in its regulation.  相似文献   

12.
This study aims to evaluate the potential involvement and regulatory mechanism of miR‐19a in hepatocytes autophagy of acute liver failure (ALF). The in vitro hepatocytes injury model of primary hepatocyte and hepatocytes line HL‐7702 was established by D‐galactosamine (D‐GalN) and lipopolysaccharide (LPS) co‐treatment. Relative expression level of miR‐19a and NBR2 was determined by qRT‐PCR. Protein expression of AMPK/PPARα and autophagy‐related gene was determined by Western blot. In hepatic tissue of 20 ALF patients and D‐GalN/LPS‐stimulated hepatocytes, miR‐19a was upregulated and NBR2 was downregulated. D‐GalN/LPS stimulation caused the inactivation of AMPK/PPARα signaling and the decrease of autophagy‐related LC3‐II/LC3‐I ratio and beclin‐1 expression in hepatocytes. The expression of both AMPK/PPARα and NBR2 were negatively controlled by miR‐19a overexpression or knockdown. Moreover, both NBR2 and PPARα were targeted regulated by miR‐19a according to luciferase reporter assay. In D‐GalN/LPS‐stimulated hepatocytes, AMPK activation promoted PPARα expression. AMPK inactivation inhibited the pro‐autophagy effect of miR‐19a and caused the decrease of LC3‐II/LC3‐I ratio and beclin‐1 expression. PPARα activation abrogated the anti‐autophagy effect of miR‐19a mimic and caused the increase of LC3‐II/LC3‐I ratio and beclin‐1 expression. NBR2 knockdown reversed the anti‐autophagy impact of miR‐19a inhibitor and caused the decrease of LC3‐II/LC3‐I ratio and beclin‐1 expression. In summary, our data suggested that miR‐19a negatively controlled the autophagy of hepatocytes attenuated in D‐GalN/LPS‐stimulated hepatocytes via regulating NBR2 and AMPK/PPARα signaling. J. Cell. Biochem. 119: 358–365, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

13.
14.
BackgroundThe transition from steatosis to non-alcoholic steatohepatitis (NASH) is a key issue in non-alcoholic fatty liver disease (NAFLD). Observations in patients with obstructive sleep apnea syndrome (OSAS) suggest that hypoxia contributes to progression to NASH and liver fibrosis, and the release of extracellular vesicles (EVs) by injured hepatocytes has been implicated in NAFLD progression.AimTo evaluate the effects of hypoxia on hepatic pro-fibrotic response and EV release in experimental NAFLD and to assess cellular crosstalk between hepatocytes and human hepatic stellate cells (LX-2).MethodsHepG2 cells were treated with fatty acids and subjected to chemically induced hypoxia using the hypoxia-inducible factor 1 alpha (HIF-1α) stabilizer cobalt chloride (CoCl2). Lipid droplets, oxidative stress, apoptosis and pro-inflammatory and pro-fibrotic-associated genes were assessed. EVs were isolated by ultracentrifugation. LX-2 cells were treated with EVs from hepatocytes. The CDAA-fed mouse model was used to assess the effects of intermittent hypoxia (IH) in experimental NASH.ResultsChemical hypoxia increased steatosis, oxidative stress, apoptosis and pro-inflammatory and pro-fibrotic gene expressions in fat-laden HepG2 cells. Chemical hypoxia also increased the release of EVs from HepG2 cells. Treatment of LX2 cells with EVs from fat-laden HepG2 cells undergoing chemical hypoxia increased expression pro-fibrotic markers. CDAA-fed animals exposed to IH exhibited increased portal inflammation and fibrosis that correlated with an increase in circulating EVs.ConclusionChemical hypoxia promotes hepatocellular damage and pro-inflammatory and pro-fibrotic signaling in steatotic hepatocytes both in vitro and in vivo. EVs from fat-laden hepatocytes undergoing chemical hypoxia evoke pro-fibrotic responses in LX-2 cells.  相似文献   

15.
16.
BackgroundThe activation of hepatic stellate cells plays a central role in the development of liver fibrosis during chronic liver trauma. The aim of the present study was to identify a compound that inhibits the activation process of stellate cells.MethodsRat primary cultured stellate cells and a human stellate cell line (LX-2) were used. The effects of arundic acid on the expression of α-smooth muscle actin, collagen 1α1, and cytoglobin were evaluated.ResultsArundic acid (300 μM) inhibited the activation of primary rat stellate cells, as determined by morphological transformation and α-smooth muscle actin expression, after both prophylactic and therapeutic treatment. The level of α-smooth muscle actin mRNA showed a dose-dependent decrease in response to arundic acid, and 50 μM arundic acid exhibited the maximum inhibition of collagen 1α1 mRNA expression. In contrast, arundic acid triggered an unexpected increase in mRNA and protein levels of cytoglobin, the fourth globin in mammals expressed exclusively in hepatic stellate cells. The effect of arundic acid on the level of α-smooth muscle actin mRNA was abrogated in HSCs treated with cytoglobin siRNA. Arundic acid decreased the expression of collagen 1α1 mRNA in LX-2 cells.ConclusionArundic acid affects the activation process of hepatic stellate cells via the unexpected induction of cytoglobin.  相似文献   

17.
Molecular targeted agents are pharmacologically used to treat liver fibrosis and have gained increased attention. The present study examined the preventive effect of lenvatinib on experimental liver fibrosis and sinusoidal capillarization as well as the in vitro phenotypes of hepatic stellate cells. LX-2, a human stellate cell line, was used for in vitro studies. In vivo liver fibrosis was induced in F344 rats using carbon tetrachloride by intraperitoneal injection for 8 weeks, and oral administration of lenvatinib was started two weeks after initial injection of carbon tetrachloride. Lenvatinib restrained proliferation and promoted apoptosis of LX-2 with suppressed phosphorylation of extracellular signal-regulated kinase 1/2 and AKT. It also down-regulated COL1A1, ACTA2 and TGFB1 expressions by inhibiting the transforming growth factor-β1/Smad2/3 pathway. Treatment with lenvatinib also suppressed platelet-derived growth factor-BB-stimulated proliferation, chemotaxis and vascular endothelial growth factor-A production, as well as basic fibroblast growth factor-induced LX-2 proliferation. In vivo study showed that lenvatinib attenuated liver fibrosis development with reduction in activated hepatic stellate cells and mRNA expression of profibrogenic markers. Intrahepatic neovascularization was ameliorated with reduced hepatic expressions of Vegf1, Vegf2 and Vegfa in lenvatinib-treated rats. Collectively, these results suggest the potential use of lenvatinib as a novel therapeutic strategy for liver fibrosis.  相似文献   

18.
Colorectal cancer is a major contributor of cancer-related mortality. The mammalian target or rapamycin (mTOR) signaling is frequently hyper-activated in colorectal cancers, promoting cancer progression and chemo-resistance. In the current study, we investigated the anti-colorectal cancer effect of a novel mTOR complex 1 (mTORC1) and mTORC2 dual inhibitor: AZD-2014. In cultured colorectal cancer cell lines, AZD-2014 significantly inhibited cancer cell growth without inducing significant cell apoptosis. AZD-2014 blocked activation of both mTORC1 (S6K and S6 phosphorylation) and mTORC2 (Akt Ser 473 phosphorylation), and activated autophagy in colorectal cancer cells. Meanwhile, autophagy inhibition by 3-methyaldenine (3-MA) and hydroxychloroquine, as well as by siRNA knocking down of Beclin-1 or ATG-7, inhibited AZD-2014-induced cytotoxicity, while the apoptosis inhibitor had no rescue effect. In vivo, AZD-2014 oral administration significantly inhibited the growth of HT-29 cell xenograft in SCID mice, and the mice survival was dramatically improved. At the same time, in xenografted tumors administrated with AZD-2014, the activation of mTORC1 and mTORC2 were largely inhibited, and autophagic markers were significantly increased. Thus, AZD-2014 inhibits colorectal cancer cell growth both in vivo and in vitro. Our results suggest that AZD-2014 may be further investigated for colorectal cancer therapy in clinical trials.  相似文献   

19.
Previous studies of knock-out mouse embryos have shown that the Wilms’ tumor suppressor gene (Wt1) is indispensable for the development of kidneys, gonads, heart, adrenals and spleen. Using OPT (Optical Projection Tomography) we have found a new role for Wt1 in mouse liver development. In the absence of Wt1, the liver is reduced in size, and shows lobing abnormalities. In normal embryos, coelomic cells expressing Wt1, GATA-4, RALDH2 and RXRα delaminate from the surface of the liver, intermingle with the hepatoblasts and incorporate to the sinusoidal walls. Some of these cells express desmin, suggesting a contribution to the stellate cell population. Other cells, keeping high levels of RXRα immunoreactivity, are negative for stellate or smooth muscle cell markers. However, coelomic cells lining the liver of Wt1-null embryos show decreased or absent RALDH2 expression, the population of cells expressing high levels of RXRα is much reduced and the proliferation of hepatoblasts and RXRα-positive cells is significantly decreased. On the other hand, the expression of smooth muscle cell specific α-actin increases throughout the liver, suggesting an accelerated and probably anomalous differentiation of stellate cell progenitors. We describe a similar retardation of liver growth in RXRα-null mice as well as in chick embryos after inhibition of retinoic acid synthesis. We propose that Wt1 expression in cells delaminating from the coelomic epithelium is essential for the expansion of the progenitor population of liver stellate cells and for liver morphogenesis. Mechanistically, at least part of this effect is mediated via the retinoic acid signaling pathway.  相似文献   

20.
HL-1 cardiomyocytes were subjected to simulated hypoxia, in the presence of cobalt chloride, which resulted in reduction of cell viability and induction of DNA laddering, indicating the activation of the apoptotic cascade. In the presence of trolox, ascorbic acid, melatonin and the hybrid compound of trolox and lipoic acid (LaT 3a), cell viability was increased, with LaT 3a exhibiting the best effect. Antioxidant treatment restored ATP levels, abolished laddering of DNA, abrogated MPTP opening, Bax translocation to the mitochondria and cytochrome c release to the cytoplasm. Moreover, severe hypoxia, was found to destabilize hypoxia inducible factor-1α (Hif-1α) mRNA. Reduction of oxidative stress attenuated this effect, implying a possible anti-apoptotic action of the master regulator of hypoxia response. Our data suggest that antioxidants can maintain cell function and survival by inhibiting the mitochondrial apoptotic pathway and stabilizing Hif-1α.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号