首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatitis B virus transcript produced by RNA splicing   总被引:12,自引:5,他引:7       下载免费PDF全文
  相似文献   

2.
3.
4.
Full-length unspliced genomic RNA plays critical roles in HIV replication, serving both as mRNA for the synthesis of the key viral polyproteins Gag and Gag-Pol and as genomic RNA for encapsidation into assembling viral particles. We show that a second gag mRNA species that differs from the genomic RNA molecule by the absence of an intron in the 5′ untranslated region (5′UTR) is produced during HIV-2 replication in cell culture and in infected patients. We developed a cotransfection system in which epitopically tagged Gag proteins can be traced back to their mRNA origins in the translation pool. We show that a disproportionate amount of Gag is translated from 5′UTR intron-spliced mRNAs, demonstrating a role for the 5′UTR intron in the regulation of gag translation. To further characterize the effects of the HIV-2 5′UTR on translation, we fused wild-type, spliced, or mutant leader RNA constructs to a luciferase reporter gene and assayed their translation in reticulocyte lysates. These assays confirmed that leaders lacking the 5′UTR intron increased translational efficiency compared to that of the unspliced leader. In addition, we found that removal or mutagenesis of the C-box, a pyrimidine-rich sequence located in the 5′UTR intron and previously shown to affect RNA dimerization, also strongly influenced translational efficiency. These results suggest that the splicing of both the 5′UTR intron and the C-box element have key roles in regulation of HIV-2 gag translation in vitro and in vivo.  相似文献   

5.
6.
7.
8.
9.
10.
The structures of murine sarcoma virus (MuSV) ts110 viral RNA and intracellular RNA present in MuSV ts110-infected cells (6m2 cells) have been examined by S1 nuclease analysis. A previous study involving heteroduplex analysis of MuSV ts110 viral RNAs hybridized to wild-type DNA revealed the presence of two MuSV ts110 RNAs, 4.0 and 3.5 kilobases (kb) in length, containing overlapping central deletions relative to wild-type MuSV 124 viral RNA (Junghans et al., J. Mol. Biol. 161:229-255, 1982). Here we show that the deletion (termed delta 1) in the 4.0-kb RNA has a 5' border located at about nucleotide 2409 (using the numbering system of Van Beveren et al., Cell 27:97-108, 1981), a position 63 bases upstream of the junction of the p30 and p10 coding sequences. The 3' border of the delta 1 deletion is found 1,473 bases downstream at approximately nucleotide 3883, 10 nucleotides downstream of the first mos gene initiation codon. In the 3.5-kb MuSV ts110 RNA, the 5' border of the deleted central region (termed delta 2) is located in a splice consensus donor site at approximately nucleotide 2017, 330 bases downstream from the junction of the p12 and p30 coding sequences, and extends about 1,915 bases in the downstream direction to nucleotide 3935, found in a splice consensus acceptor site about 55 nucleotides downstream of the first mos gene initiation codon and 30 bases upstream of the second initiation codon. No alteration of polyadenylate addition sites was observed in either MuSV ts110 RNA species, as compared with MuSV 349 RNA. The observation that the 5' and 3' borders of the deletion in the 3.5-kb RNA are within in-frame splice donor and acceptor sites suggests strongly that the 3.5-kb RNA is derived from the 4.0-kb RNA by a temperature-sensitive splice mechanism. Data presented here show unequivocally that formation of the 3.5-kb MuSV ts110 RNA from which the P85gag-mos polypeptide is translated is temperature sensitive. At 33 degrees C, with S1 analysis, the 3.5-kb RNA is found readily in 6m2 cells. Within 4 h of a shift to 39 degrees C, however, only trace amounts of this RNA can be found. Moreover, reshifting 6m2 cells to 33 degrees C permits the reappearance of the 3.5-kb RNA at its original level.  相似文献   

11.
12.
Obesity is a global health issue, as it is associated with increased risk of developing chronic conditions associated with disorders of metabolism such as type 2 diabetes and cardiovascular disease. A better understanding of how excessive fat accumulation develops and causes diseases of the metabolic syndrome is urgently needed. The hypothalamic melanocortin system is an important point of convergence connecting signals of metabolic status with the neural circuitry that governs appetite and the autonomic and neuroendocrine system controling metabolism. This system has a critical role in the defense of body weight and maintenance of homeostasis. Two neural melanocortin receptors, melanocortin 3 and 4 receptors (MC3R and MC4R), play crucial roles in the regulation of energy balance. Mutations in the MC4R gene are the most common cause of monogenic obesity in humans, and a large literature indicates a role in regulating both energy intake through the control of satiety and energy expenditure. In contrast, MC3Rs have a more subtle role in energy homeostasis. Results from our lab indicate an important role for MC3Rs in synchronizing rhythms in foraging behavior with caloric cues and maintaining metabolic homeostasis during periods of nutrient scarcity. However, while deletion of the Mc3r gene in mice alters nutrient partitioning to favor accumulation of fat mass no obvious role for MC3R haploinsufficiency in human obesity has been reported. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.  相似文献   

13.
14.
15.
16.
In the present study, we demonstrated the reciprocal regulation of hypoxia-inducible factor 1 alpha (HIF1A) gene expression via untranslated region-(UTR) dependent mechanisms. A 151 nucleotide sequence found in the HIF1A 5′-UTR is sufficient for significant translational up-regulation. On the other hand, the 3′-UTR of HIF1A has been implicated in mRNA degradation. In the non-metastatic breast cancer cell line MCF7, the 3′-UTR-dependent down-regulatory machinery predominates over the 5′-UTR-dependent up-regulation of HIF1A. However, 5′-UTR-dependent up-regulation is dominant among metastatic cell lines (MDA-MB453, U87MG). It is therefore likely that the predominance of 5′-UTR-dependent translational enhancement of HIF1A is critical for the malignant phenotype of cancer cells. PTBP-1, but not HuR, is a candidate RNA binding protein for the translational control of HIF1A.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号