共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Li Zhang Xiu Shan Qun Chen Dayu Xu Xinling Fan Ming Yu Qiu Yan Jiwei Liu 《Journal of cellular physiology》2019,234(12):22207-22219
The metastatic rate of human cutaneous squamous cell carcinoma (CSCC) has increased in recent years. Despite the current advances in therapies, effective treatments remain lacking. Ginsenoside 20(R)-Rg3 is an effective antitumor monomer extracted from ginseng, but the role of Rg3 in CSCC remains unknown. It has been reported that aberrantly elevated histone deacetylase 3 (HDAC3) is involved in tumor malignancy in multiple malignant tumors . However, the effects of HDAC3 on the regulation of c-Jun acetylation in tumor epithelial–mesenchymal transition (EMT) and migration have not been clearly illuminated. In our research, the immunohistochemistry staining results of skin tissue microarrays showed that HDAC3 staining was increased in CSCC compared with the normal dermal tissue. Then, we found that Rg3 treatment (25 and 50 μg/ml) inhibited CSCC cell (A431 and SCC12 cells) EMT through increasing E-cadherin and decreasing N-cadherin, vimentin, and Snail expression. Wound-healing and transwell assays showed that Rg3 could inhibit migration. Meanwhile, Rg3 significantly downregulated the expression of HDAC3 in CSCC cells as detected by real-time quantitative PCR, western blot, and immunofluorescence. Importantly, c-Jun acetylation was increased by the downregulation of HDAC3 with HDAC3 shRNA, and the downregulation was associated with CSCC cell EMT inhibition. Collectively, our results showed that downregulation of HDAC3 by Rg3 or shHDAC3 treatment resulted in c-Jun acetylation, which in turn inhibited CSCC cell EMT. These results indicate that HDAC3 could potentially serve as a therapeutic target therapeutic target for CSCC. Rg3 is an attractive and efficient agent that has oncotherapeutic effects and requires further investigation. 相似文献
3.
Cun Wang Kai Jiang Xiaonan Kang Dongmei Gao Chun Sun Yan Li Lu Sun Shu Zhang Xiaohui Liu Weizhong Wu Pengyuan Yang Kun Guo Yinkun Liu 《The international journal of biochemistry & cell biology》2012,44(12):2308-2320
Hepatocellular carcinoma (HCC) is the third most common cause of cancer mortality. Metastasis is the major concern that causes death in HCC. The goal of this study was to identify tumor-derived proteins in serum during HCC metastasis using an orthotopic xenograft tumor model and explore the role of key protein in HCC metastasis. Serum samples collected from HCCLM3-R metastatic HCC tumor model at specific stages of metastasis (1 wk, 3 wks and 6 wks) were subjected to iTRAQ labeling followed by 2DLC-ESI-MS/MS analysis. Twenty tumor-derived proteins were identified through human specific peptides. Secretory clusterin (sCLU), which was significantly upregulated during cancer progression and metastasis, was chosen for further study. The expression of sCLU was significantly higher in metastatic HCC cell lines and samples from metastatic HCC patients. ShRNA-mediated down-regulation of sCLU resulted in a reduced migratory capacity in HCC cell lines, as well as a reduction in pulmonary metastasis in vivo. Overexpression of sCLU in HepG2 cell line showed increased cell migratory ability. Further study found that sCLU contributed to HCC migration and epithelial–mesenchymal transition (EMT) in vitro, and metastasis in vivo. In addition, sCLU also plays an important role in the regulation of TGF-β1-smad3 signaling. These findings suggest that sCLU may promote HCC metastasis via the induction of EMT process and may be a candidate target for HCC therapy. 相似文献
4.
Weiling Xu Fangchao Gong Ting Zhang Baorong Chi Jingyu Wang 《Biotechnology letters》2017,39(9):1359-1367
Objectives
To investigate the roles of Dead end 1 (Dnd1) in modulating cancer stem cell-related traits of hepatocellular carcinoma (HCC).Results
Dead end (Dnd1) inhibited spheroid formation, suppressed the expression of stemness-related genes, and increased sensitivity to sorafenib in HCC cells. Mechanistically, Dnd1 could bind to 3′-UTR of LATS2, the key kinase of Hippo pathway, thus elevating LATS2 mRNA stability and its expression, subsequently leading to phosphorylation of YAP and its cytoplasmic retention. As a result, epithelial–mesenchymal transition (EMT) was weakened and therefore the generation of HCC stem cell properties was suppressed.Conclusions
Dnd1 functions as a tumor suppressor by prohibiting CSC-like characteristics via activating Hippo pathway in HCC cells. Dnd1 could thus be a novel therapeutic target for HCC patients.5.
Li Jing Zhiping Ruan Haifeng Sun Qing Li Lili Han Lanxuan Huang Sizhe Yu Yu Wang Hui Guo Min Jiao 《Journal of cellular physiology》2019,234(10):18448-18458
Hepatocellular carcinoma in China accounts for half of the world's incidence. Both epithelial–mesenchymal transition (EMT) and cancer stem cells (CSCs) are thought to be involved in tumor malignant progression. However, the relationship between EMT and CSCs is still unclear. Bioinformatics analysis was performed to evaluate the relationship between EMT and CSCs. The EMT and CSC regulatory mechanism was investigated through Transwell, wound-healing, sphere formation, colony-forming, and western blotting assays. Immunofluorescence and immunoprecipitation were used to study the interaction of hypoxia inducible factor 1α (HIF-1α) /Notch1. Immunohistochemical study was applied to investigate the expression pattern in the process of hepatocellular carcinogenesis and development. In our present study, bioinformatics results indicate that the expression of EMT-related molecules is correlated with CSCs. In vitro studies indicated that EMT activation could induce CSC characteristics. Notch1 was confirmed to mediate the process of EMT-induced CSCs through the interaction with HIF-1α directly. Our findings indicate that EMT could induce CSC-like characteristics, which is mediated by HIF-1α-upregulated Notch intracellular domain expression. 相似文献
6.
Xuqi Li Pei Li Yuanhong Chang Qinhong Xu Zheng Wu Qingyong Ma Zheng Wang 《Molecular and cellular biochemistry》2014,391(1-2):77-84
Targeted immunotherapy has become a popular research topic in cancer. The development and metastasis of cervical carcinoma are closely related to epidermal growth factor (EGF) and EGF-1 receptor (EGFR). We successfully constructed a single-chain human anti-EGFR antibody (scFv) and truncated protamine (tP) fusion protein (scFV/tP) expression vector using overlap extension PCR. Enzyme-linked immunosorbent assay and gel shift assay showed that the fusion protein retained the DNA and antigen-binding activity of the original antibody. Using the non-viral scFv/tP vector as a delivery tool, small interfering RNA (siRNA) of the human wings apart-like gene (hWAPL) was effectively transfected into cervical cancer HeLa cells. The hWAPL mRNA expression levels were reduced by 97.23 % in contrast with control cells, and the proliferation capability declined by 66.71 %, indicating significant inhibition. The present results provide a novel strategy for targeted gene therapy and siRNA therapy of EGFR-positive cervical cancers. 相似文献
7.
Ning Dong Bing Xu Silvia R. Benya Xin Tang 《Molecular and cellular biochemistry》2014,389(1-2):229-238
In the present study we investigated the effects of lung injury on energy metabolism (succinate dehydrogenase, complex II, cytochrome c oxidase, and ATP levels), respiratory mechanics (dynamic and static compliance, elastance and respiratory system resistance) in the lungs of rats, as well as on phospholipids in bronchoalveolar lavage fluid. The protective effect of physical exercise on the alterations caused by lung injury, including lung edema was also evaluated. Wistar rats were submitted to 2 months of physical exercise. After this period the lung injury was induced by intratracheal instillation of lipopolysaccharide. Adult Wistar rats were submitted to 2 months of physical exercise and after this period the lung injury was induced by intratracheal instillation of lipopolysaccharide in dose 100 μg/100 g body weight. The sham group received isotonic saline instillation. Twelve hours after the injury was performed the respiratory mechanical and after the rats were decapitated and samples were collected. The rats subjected to lung injury presented a decrease in activities of the enzymes of the electron transport chain and ATP levels in lung, as well as the formation of pulmonary edema. A decreased lung dynamic and static compliance, as well as an increase in respiratory system resistance, and a decrease in phospholipids content were observed. Physical exercise was able to totally prevent the decrease in succinate dehydrogenase and complex II activities and the formation of pulmonary edema. It also partially prevented the increase in respiratory system resistance, but did not prevent the decrease in dynamic and static compliance, as well as in phospholipids content. These findings suggest that the mitochondrial dysfunction may be one of the important contributors to lung damage and that physical exercise may be beneficial in this pathology, although it did not prevent all changes present in lung injury. 相似文献
8.
Background
The progression of cancer through stages that guide a benign hyperplastic epithelial tissue towards a fully malignant and metastatic carcinoma, is driven by genetic and microenvironmental factors that remodel the tissue architecture. The concept of epithelial–mesenchymal transition (EMT) has evolved to emphasize the importance of plastic changes in tissue architecture, and the cross-communication of tumor cells with various cells in the stroma and with specific molecules in the extracellular matrix (ECM).Scope of the review
Among the multitude of ECM-embedded cytokines and the regulatory potential of ECM molecules, this article focuses on the cytokine transforming growth factor β (TGFβ) and the glycosaminoglycan hyaluronan, and their roles in cancer biology and EMT. For brevity, we concentrate our effort on breast cancer.Major conclusions
Both normal and abnormal TGFβ signaling can be detected in carcinoma and stromal cells, and TGFβ-induced EMT requires the expression of hyaluronan synthase 2 (HAS2). Correspondingly, hyaluronan is a major constituent of tumor ECM and aberrant levels of both hyaluronan and TGFβ are thought to promote a wounding reaction to the local tissue homeostasis. The link between EMT and metastasis also involves the mesenchymal–epithelial transition (MET). ECM components, signaling networks, regulatory non-coding RNAs and epigenetic mechanisms form the network of regulation during EMT-MET.General significance
Understanding the mechanism that controls epithelial plasticity in the mammary gland promises the development of valuable biomarkers for the prognosis of breast cancer progression and even provides new ideas for a more integrative therapeutic approach against disease. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties. 相似文献9.
Dongming Chen Meng Zhu Huang Su Jiexun Chen Xianlin Xu Changchun Cao 《Journal of cellular physiology》2019,234(5):7257-7265
Recently, long noncoding RNA have been identified as new gene regulators and prognostic biomarkers in various cancers, including renal cell carcinoma (RCC). The expression and biological roles of LINC00961 have been reported in many human cancers. However, up to date, no study of LINC00961 has been shown in RCC. Currently, we aimed to investigate the function of LINC00961 in RCC progression. Interestingly, we observed that LINC00961 could act as a novel biomarker in predicting the diagnosis of RCC. Then, we found that LINC00961 was greatly downregulated in RCC cell lines (Caki-1, Caki-2, 786-O, A498, and ACHN cells) compared with normal renal cell lines (HK-2 cells). Then, 786-O cells and ACHN cells were infected with LV-LINC00961. As displayed in our current study, LINC00961 overexpression could obviously suppress the proliferation and survival of RCC cells in vitro. In addition, RCC cell apoptosis was greatly induced and cell cycle progression was blocked in G1 phase by upregulation of LINC00961 in 786-O cells and ACHN cells. Subsequently, we found that LV-LINC00961 was able to restrain RCC cell migration and cell invasion capacity. Meanwhile, the messenger RNA and protein expression levels of epithelial–mesenchymal transition (EMT)-associated markers Slug and N-cadherin in RCC cell lines were dramatically inhibited by overexpressing LINC00961. Finally, the in vivo experiment was carried out and we observed that LINC00961 could inhibit RCC development through modulating EMT process. Taken these together, it was indicated in our study that LINC00961 was involved in RCC progression through targeting EMT pathway. 相似文献
10.
Jingxia Chang Feng Gao Heying Chu Lili Lou Huaqi Wang Yibing Chen 《Journal of cellular physiology》2020,235(2):1808-1820
miR-363-3p is downregulated in lung adenocarcinoma and can inhibit tumor growth. Here, we aimed to investigate the effect of miR-363-3p on non-small-cell lung cancer (NSCLC) metastasis. In our study, miR-363-3p overexpression inhibited cell migration and invasion via epithelial–mesenchymal transition inhibition, while miR-363-3p knockdown exhibited the opposite effects. Further studies demonstrated that miR-363-3p bound to 3′-untranslated regions of NEDD9 and SOX4, and negatively regulated their levels. Interestingly, NEDD9 or SOX4 knockdown rescued the metastasis-promoting effects of antagomiR-363-3p. The inhibitory effects of agomiR-363-3p were also blocked by NEDD9 or SOX4 overexpression. Moreover, lentivirus particles carrying pre-miR-363 (LV-pre-miR-363) significantly decreased, while LV-miR-363-3p inhibitor increased metastatic nodule numbers and the levels of NEDD9 and SOX4 in lungs. In conclusion, tumor suppressor miR-363-3p may be a potential target in NSCLC therapy. 相似文献
11.
Wen Wang Yan Zhao Shujuan Yao Xiujuan Cui Wenying Pan Wenqian Huang Jiangang Gao Taotao Dong Shiqian Zhang 《Biochemistry. Biokhimii?a》2017,82(8):933-941
Epithelial ovarian cancer (EOC) has the highest mortality among various types of gynecological malignancies. Most patients die of metastasis and recurrence due to cisplatin resistance. Thus, it is urgent to develop novel therapies to cure this disease. CCK-8 assay showed that nigericin exhibited strong cytotoxicity on A2780 and SKOV3 cell lines. Flow cytometry indicated that nigericin could induce cell cycle arrest at G0/G1 phase and promote cell apoptosis. Boyden chamber assay revealed that nigericin could inhibit migration and invasion in a dose-dependent manner by suppressing epithelial–mesenchymal transition (EMT) in EOC cells. These effects were mediated, at least partly, by the Wnt/β-catenin signaling pathway. Our results demonstrated that nigericin could inhibit EMT during cell invasion and metastasis through the canonical Wnt/β-catenin signaling pathway. Nigericin may prove to be a novel therapeutic strategy that is effective in patients with metastatic EOC. 相似文献
12.
13.
14.
Mei Du Yuan Zhuang Peng Tan Zongbu Yu Xiutian Zhang Aihua Wang 《Journal of cellular physiology》2020,235(2):944-956
This study investigated the role of microRNA-95 (miR-95) in gastric cancer (GC) and to elucidate the underlying mechanism. Initially, bioinformatic prediction was used to predict the differentially expressed genes and related miRNAs in GC. miR-95 and DUSP5 expression was altered in GC cell line (MGC803) to evaluate their respective effects on the epithelial–mesenchymal transition (EMT) process, cellular processes (cell proliferation, migration, invasion, cell cycle, and apoptosis), cancer stem cell (CSC) phenotype, as well as tumor growth ability. It was further predicted in bioinformatic prediction and verified in GC tissue and cell line experiments that miR-95 was highly expressed in GC. miR-95 negatively regulated DUSP5, which resulted in the MAPK pathway activation. Inhibited miR-95 or overexpressed DUSP5 was observed to inhibit the levels of CSC markers (CD133, CD44, ALDH1, and Lgr5), highlighting the inhibitory role in the CSC phenotype. More important, evidence was obtained demonstrating that miR-95 knockdown or DUSP5 upregulation exerted an inhibitory effect on the EMT process, cellular processes, and tumor growth. Together these results, miR-95 knockdown inhibited GC development via DUSP5-dependent MAPK pathway. 相似文献
15.
16.
17.
18.
R-J Jia L Cao L Zhang W Jing R Chen M-H Zhu S-W Guo G-B Wu X-Y Fan H Wang Y-Y Zhang X-Y Zhou J Zhao Y-J Guo 《Cell death & disease》2014,5(3):e1103
Metastasis is the leading cause of death in patients with hepatocellular carcinoma (HCC) after curative resection. Therefore, it is critical to understand the mechanisms underlying tumor metastasis in HCC. We have previously shown that elevated expression of myeloid differentiation factor 88 (MyD88) may promote tumor growth and metastasis in HCC. In this study, we reported that enhanced expression of MyD88 promoted epithelial–mesenchymal transition (EMT) properties and tumor-initiating capabilities in HCC cells. MyD88 was found to be able to interact with p85, a regulatory subunit of phosphoinositide 3-kinase (PI3-K), independent of TLR/IL-1R-mediated response and caused PI3-K/v-akt murine thymoma viral oncogene homolog (Akt) activation, which resulted in subsequent phosphorylation of glycogen synthase kinase-3β and stabilization of Snail, a critical EMT mediator. Consistently, we observed a significant correlation between MyD88 expression and p-Akt levels in a cohort of HCC patients, and found that the combination of these two parameters have better prognostic value for HCC patients. Taken together, these results suggest that elevated MyD88 may facilitate HCC metastasis by promoting EMT properties and tumor-initiating capabilities via PI3–K/Akt pathway. 相似文献
19.
20.
Sheng-Hao Lin Bing-Yen Wang Ching-Hsiung Lin Peng-Ju Chien Yueh-Feng Wu Jiunn-Liang Ko Jeremy J. W. Chen 《Molecular biology reports》2016,43(7):687-695
Transforming growth factor-β (TGF-β)-induced epithelial–mesenchymal transition is a critical process in the initiation of metastasis of various types of cancer. Chidamide is a class I histone deacetylase inhibitor with anti-tumor activity. This study investigated the effects of chidamide on TGF-β-mediated suppression of E-cadherin expression in adenocarcinomic lung epithelial cells and the molecular mechanisms involved in these effects. Western blot analysis, confocal microscopy, Quantitative methyl-specific PCR and bisulfite sequencing were used to evaluate the effects of different treatments on chidamide ameliorating TGF-β induced-E-cadherin loss. H3 acetylation binding to the promoter of E-cadherin was detected by chromatin immunoprecipitations (CHIP). We found that chidamide reduced the level of lung cancer cell migration observed using a Boyden chamber assay (as an indicator of metastatic potential). Chidamide inhibited TGF-β-induced SMAD2 phosphorylation and attenuated TGF-β-induced loss of E-cadherin expression in lung cancer cells by Western blotting and confocal microscopy, respectively. Quantitative methyl-specific PCR and bisulfite sequencing revealed that TGF-β-enhanced E-cadherin promoter methylation was ameliorated in cells treated with chidamide. We demonstrated that histone H3 deacetylation within the E-cadherin promoter was required for TGF-β-induced E-cadherin loss; cell treatment with chidamide increased the H3 acetylation detected by CHIP. Taken together, our results demonstrate that TGF-β suppressed E-cadherin expression by regulating promoter methylation and histone H3 acetylation. Chidamide significantly enhanced E-cadherin expression in TGF-β-treated cells and inhibited lung cancer cell migration. These findings indicate that chidamide has a potential therapeutic use due to its capacity to prevent cancer cell metastasis. 相似文献