首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously demonstrated that the reductive carboxylation of 2-oxoglutarate in Hydrogenobacter thermophilus TK-6 is not simply a reversal of the oxidative decarboxylation catalysed by isocitrate dehydrogenase (ICDH). The reaction involves a novel biotin protein (carboxylating factor for ICDH-CFI) and ATP. In this study, we have analysed the ICDH/CFI system responsible for the carboxylation reaction. Sequence analysis revealed a close relationship between CFI and pyruvate carboxylase. Rather unexpectedly, the rate of ATP hydrolysis was greater than that of isocitrate formation or NADH oxidation. Furthermore, ATP hydrolysis catalysed by CFI was dependent on 2-oxoglutarate but not on ICDH, suggesting that a carboxylated product is formed in the absence of ICDH. The product, which was detectable only at low temperatures, was identified as oxalosuccinate. Thus, CFI was confirmed to be a novel enzyme that catalyses the carboxylation of 2-oxoglutarate to form oxalosuccinate, which corresponds to the first step of the reductive carboxylation from 2-oxoglutarate to isocitrate. The CFI-ICDH system may also be present in mammals, where it could play a significant role in modulating central metabolism.  相似文献   

2.
1. A simple kinetic method was devised to show whether dissolved CO(2) or HCO(3)- ion is the substrate in enzyme-catalysed carboxylation reactions. 2. The time-course of the reductive carboxylation of 2-oxoglutarate by NADPH, catalysed by isocitrate dehydrogenase, was studied by a sensitive fluorimetric method at pH7.3 and pH6.4, with large concentrations of substrate and coenzyme and small carbon dioxide concentrations. 3. Reaction was initiated by the addition of carbon dioxide in one of three forms: (i) as the dissolved gas in equilibrium with bicarbonate; (ii) as unbuffered bicarbonate solution; (iii) as the gas or as an unbuffered solution of the gas in water. Different progress curves were obtained in the three cases. 4. The results show that dissolved CO(2) is the primary substrate of the enzyme, and that HCO(3)- ion is at best a very poor substrate. The progress curves are in quantitative agreement with this conclusion and with the known rates of the reversible hydration of CO(2) under the conditions of the experiments. The effects of carbonic anhydrase confirm the conclusions. 5. Similar experiments on the reductive carboxylation of pyruvate catalysed by the ;malic' enzyme show that dissolved CO(2) is the primary substrate of this enzyme also. 6. The results are discussed in relation to the mechanisms of these enzymes, and the effects of pH on the reactions. 7. The advantages of the method and its possible applications to other enzymes involved in carbon dioxide metabolism are discussed.  相似文献   

3.
Cytosol PEP carboxykinase has been purified to electrophoretic homogeneity from bullfrog liver homogenate. The enzyme is a single polypeptide chain with a molecular weight of approximately 72,000-75,000. The purified enzyme catalyzed oxaloacetate decarboxylation (nucleoside triphosphate-supported), phosphoenolpyruvate carboxylation, and an exchange reaction between oxaloacetate and [14C]HCO3-in the presence of ITP or CTP. Manganese is absolutely required for the enzyme-catalyzed phosphoenolpyruvate carboxylation, whereas it can be replaced by Mg2+ for the oxaloacetate decarboxylation and the exchange reaction. The optimal pH of each reaction is dependent on the divalent metal ion used. The dependence of the enzyme activity on Mn2+ is markedly different in the phosphoenolpyuvate carboxylation and the oxaloacetate decarboxylation reactions.  相似文献   

4.
This contribution describes the trapping of the hydroperoxyl radical at a pH of 4 during turnover of wild-type oxalate decarboxylase and its T165V mutant using the spin-trap BMPO. Radicals were detected and identified by a combination of EPR and mass spectrometry. Superoxide, or its conjugate acid, the hydroperoxyl radical, is expected as an intermediate in the decarboxylation and oxidation reactions of the oxalate monoanion, both of which are promoted by oxalate decarboxylase. Another intermediate, the carbon dioxide radical anion was also observed. The quantitative yields of superoxide trapping are similar in the wild type and the mutant while it is significantly different for the trapping of the carbon dioxide radical anion. This suggests that the two radicals are released from different sites of the protein.  相似文献   

5.
Carboxylation reactions widely occur in nature by the direct use of carbon dioxide or hydrogen carbonate and are mediated by enzymes, which may or may not have a metal as an active center. Such direct carboxylation reactions have found only very few applications for synthetic purposes at industrial level. In this paper we review a part of the work we have done on the use of carbon dioxide and describe: (i) the use of a carboxylation enzyme for the conversion of phenol into 4-OH benzoic acid; and (ii) the potential of biomimetic mixed anhydrides for the synthesis of compounds of industrial interest. The enzymatic production of acetic acid from carbon dioxide is compared with known and new transition metal catalyzed reactions that are fully biomimetic.  相似文献   

6.
Carbonic anhydrase studies were used to determine the primary form of carbonic acid produced from decarboxylation of l-malic acid by "malic" enzyme in malolactic strains of five different species of lactic acid bacteria. Addition of carbonic anhydrase to the reaction mixture containing crude bacterial extract and l-malic acid, at pH 7, in all five cases resulted in an increase (13 to 23%) in the rate of carbon dioxide evolution over the control. The results indicated that the primary form of carbonic acid released from "malic" enzyme was not anhydrous carbon dioxide as previously supposed and as has been shown for other decarboxylating enzymes. The standard free-energy changes of the malo-lactic reaction with the various forms of carbonic acid as the primary decarboxylation product were calculated. The reaction is less exergonic when carbonic acid, bicarbonate ion, or carbonate ion is the primary decarboxylation product compared to anhydrous carbon dioxide. The free-energy of the reaction is not biologically available to the bacteria; with carbon dioxide not the primary decarboxylation product, the potential energy lost in a malo-lactic fermentation is not as great as previously considered. Endogenous carbonic anhydrase activity was not found.  相似文献   

7.
Carboxylases are among the most important enzymes in the biosphere, because they catalyze a key reaction in the global carbon cycle: the fixation of inorganic carbon (CO2). This minireview discusses the physiological roles of carboxylases in different microbial pathways that range from autotrophy, carbon assimilation, and anaplerosis to biosynthetic and redox-balancing functions. In addition, the current and possible future uses of carboxylation reactions in synthetic biology are discussed. Such uses include the possible transformation of the greenhouse gas carbon dioxide into value-added compounds and the production of novel antibiotics.  相似文献   

8.
[1-(13)C], [2-(13)C] and [6-(13)C] D-glucose were, respectively, ozonized in a semi-batch reactor in acidic and basic conditions. The composition of the gas phase was evaluated by on-line mass spectrometry measurements. The quantitative and isotopic analyses of the carbon dioxide formed during ozonization are presented and discussed. The data, correlated with previous literature results, clearly show that at pH 2.5 the production of carbon dioxide from C-6 and C-1 carbon atoms is nearly equivalent. Conversely, at higher pH values, CO(2) is released with a greater selectivity from the reducing end. The importance of the decarboxylation reaction in the formation of by-products with fewer than six carbon atoms is also demonstrated.  相似文献   

9.
Benzoylformate decarboxylase (benzoylformate carboxy-lyase, BFD; EC 4.1.1.7) from Pseudomonas putida is a thiamine pyrophosphate (TPP) dependent enzyme which converts benzoylformate to benzaldehyde and carbon dioxide. The kinetics and mechanism of the benzoylformate decarboxylase reaction were studied by solvent deuterium and 13C kinetic isotope effects with benzoylformate and a series of substituted benzoylformates (pCH3O, pCH3, pCl, and mF). The reaction was found to have two partially rate-determining steps: initial tetrahedral adduct formation (D2O sensitive) and decarboxylation (13C sensitive). Solvent deuterium and 13C isotope effects indicate that electron-withdrawing substituents (pCl and mF) reduce the rate dependence upon decarboxylation such that decreased 13(V/K) effects are observed. Conversely, electron-donating substituents increase the rate dependence upon decarboxylation such that a larger 13(V/K) is seen while the D2O effects on V and V/K are not dramatically different from those for benzoylformate. All of the data are consistent with substituent stabilization or destabilization of the carbanionic intermediate (or carbanion-like transition state) formed during decarboxylation. Additional information regarding the mechanism of the enzymic reaction was obtained from pH studies on the reaction of benzoylformate and the binding of competitive inhibitors. These studies suggest that two enzymic bases are required to be in the correct protonation state (one protonated and one unprotonated) for optimal binding of substrate (or inhibitors).  相似文献   

10.
Clark DD  Allen JR  Ensign SA 《Biochemistry》2000,39(6):1294-1304
The bacterial metabolism of propylene proceeds by epoxidation to epoxypropane followed by carboxylation to acetoacetate. Epoxypropane carboxylation is a minimetabolic pathway that requires four enzymes, NADPH, NAD(+), and coenzyme M (CoM; 2-mercaptoethanesulfonate) and occurs with the overall reaction stoichiometry: epoxypropane + CO(2) + NADPH + NAD(+) + CoM --> acetoacetate + H(+) + NADP(+) + NADH + CoM. The terminal enzyme of the pathway is NADPH:2-ketopropyl-CoM [2-(2-ketopropylthio)ethanesulfonate] oxidoreductase/carboxylase (2-KPCC), an FAD-containing enzyme that is a member of the NADPH:disulfide oxidoreductase family of enzymes and that catalyzes the reductive cleavage and carboxylation of 2-ketopropyl-CoM to form acetoacetate and CoM according to the reaction: 2-ketopropyl-CoM + NADPH + CO(2) --> acetoacetate + NADP(+) + CoM. In the present work, 2-KPCC has been characterized with respect to the above reaction and four newly discovered partial reactions of relevance to the catalytic mechanism, and each of which requires the formation of a stabilized enolacetone intermediate. These four reactions are (1) NADPH-dependent cleavage and protonation of 2-ketopropyl-CoM to form NADP(+), CoM, and acetone, a reaction analogous to the physiological reaction but in which H(+) is the electrophile; (2) NADP(+)-dependent synthesis of 2-ketopropyl-CoM from CoM and acetoacetate, the reverse of the physiologically important forward reaction; (3) acetoacetate decarboxylation to form acetone and CO(2); and (4) acetoacetate/(14)CO(2) exchange to form (14)C(1)-acetoacetate and CO(2). Acetoacetate decarboxylation and (14)CO(2) exchange occurred independent of NADP(H) and CoM, demonstrating that these substrates are not central to the mechanism of enolate generation and stabilization. 2-KPCC did not uncouple NADPH oxidation or NADP(+) reduction from the reactions involving cleavage or formation of 2-ketopropyl-CoM. N-Ethylmaleimide inactivated the reactions forming/using 2-ketopropyl-CoM but did not inactivate acetoacetate decarboxylation or (14)CO(2) exchange reactions. The biochemical characterization of 2-KPCC and the associated five catalytic activities has allowed the formulation of an unprecedented mechanism of substrate activation and carboxylation that involves NADPH oxidation, a redox active disulfide, thiol-mediated reductive cleavage of a C-S thioether bond, the formation of a CoM:cysteine mixed disulfide, and enolacetone stabilization.  相似文献   

11.
The mitochondrial NADP-dependent malic enzyme (EC 1.1.1.40) was purified about 300-fold from cod Gadus morhua heart to a specific activity of 48 units (mumol/min)/mg at 30 degrees C. The possibility of the reductive carboxylation of pyruvate to malate was studied by determination of the respective enzyme properties. The reverse reaction was found to proceed at about five times the velocity of the forward rate at a pH 6.5. The Km values determined at pH 7.0 for pyruvate, NADPH and bicarbonate in the carboxylation reaction were 4.1 mM, 15 microM and 13.5 mM, respectively. The Km values for malate, NADP and Mn2+ in the decarboxylation reaction were 0.1 mM, 25 microM and 5 microM, respectively. The enzyme showed substrate inhibition at high malate concentrations for the oxidative decarboxylation reaction at pH 7.0. Malate inhibition suggests a possible modulation of cod heart mitochondrial NADP-malic enzyme by its own substrate. High NADP-dependent malic enzyme activity found in mitochondria from cod heart supports the possibility of malate formation under conditions facilitating carboxylation of pyruvate.  相似文献   

12.
Inducible pyrrole-2-carboxylate decarboxylase from Bacillus megaterium PYR2910 catalyzes the decarboxylation of pyrrole-2-carboxylate to stoichiometric amounts of pyrrole and CO2. A unique feature of the homodimeric enzyme is its requirement for an organic acid such as acetate, propionate, butyrate or pimelate. A catalytic mechanism including a cofactor function of the organic acid was proposed. Due to an equilibrium constant of 0.3–0.4 M, the enzyme also catalyzes the reverse carboxylation of pyrrole after the addition of bicarbonate. For the synthesis of pyrrole-2-carboxylate, the reverse reaction was optimized and the equilibrium shifted towards the carboxylate. The product yield was 230 mM (25.5 g/l) pyrrole-2-carboxylate from 300 mM pyrrole in a batch reaction and 325 mM (36.1 g/l) from 400 mM pyrrole in a fed batch reaction, using both whole cells and the purified enzyme in a pH 8.0 reaction mixture with bicarbonate saturation of 1.9 M.  相似文献   

13.
Pyruvate carboxylase is a biotin-dependent enzyme in which the biotin is carboxylated by a putative carboxyphosphate intermediate that is formed in a reaction between ATP and bicarbonate. The resultant carboxybiotin then transfers its carboxyl group to pyruvate to form oxaloacetate. In the Bacillus thermodenitrificans enzyme the biotin is covalently attached to K1112. A mutant form of the enzyme (K1112A) has been prepared which is not biotinylated. This mutant did not catalyse the complete reaction, but did catalyse ATP-cleavage and the carboxylation of free biotin. Oxaloacetate decarboxylation was not catalysed, even in the presence of free biotin, suggesting that only the biotin carboxylation domain of the enzyme is accessible to free biotin. This mutant allowed the study of ATP-cleavage both coupled and not coupled to biotin carboxylation. Kinetic analyses of these reactions indicate that the major effect of the enzyme activator, acetyl CoA, is to promote the carboxylation of biotin. Acetyl CoA reduces the K(m)s for both MgATP and biotin. In addition, pH profiles of the ATP-cleavage reaction in the presence and absence of free biotin revealed the involvement of several ionisable residues in both ATP-cleavage and biotin carboxylation. K1112A also catalyses the phosphorylation of ADP from carbamoyl phosphate. Stopped-flow studies using the fluorescent ATP analogue, formycin A-5'-triphosphate, in which nucleotide binding to the holoenzyme was compared to K1112A indicated that the presence of biotin enhanced binding. Attempts to trap the putative carboxyphosphate intermediate in K1112A using diazomethane were unsuccessful.  相似文献   

14.
Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics   总被引:1,自引:0,他引:1  
Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO(2) concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO(2) concentration, temperature, and radiation when evaluated against published data of V(c,max) (maximum carboxylation rate) and J(max) (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO(2) concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation feedbacks to climate in Earth system models.  相似文献   

15.
Lactococcus lactis subsp. lactis biovar diacetylactis was grown as batch cultures on a chemically defined medium. No growth was observed when the cultures were sparged with pure nitrogen (1.3 l l-1 min-1) whereas the cultures displayed exponential growth in the presence of minute amounts of carbon dioxide (0.035 mol-% of the inlet gas). However, in the former case, the addition of citrate restored growth. This suggested that oxaloacetate required for aspartate biosynthesis can be formed by the carboxylation of pyruvate or by citrate catabolism. When the cultures were heavily sparged with nitrogen (2.6 l l-1 min-1), no growth was observed even in the presence of citrate. This indicated that growth in these conditions was repressed by the absence of carbon dioxide required in some other biosynthetic reaction than in the carboxylation of pyruvate leading to oxaloacetate/aspartate biosynthesis.  相似文献   

16.
The C(3)-C(4) metabolite interconversion at the anaplerotic node in many microorganisms involves a complex set of reactions. C(3) carboxylation to oxaloacetate can originate from phosphoenolpyruvate and pyruvate, and at the same time multiple C(4)-decarboxylating enzymes may be present. The functions of such parallel reactions are not yet fully understood. Using a (13)C NMR-based strategy, we here quantify the individual fluxes at the anaplerotic node of Corynebacterium glutamicum, which is an example of a bacterium possessing multiple carboxylation and decarboxylation reactions. C. glutamicum was grown with a (13)C-labeled glucose isotopomer mixture as the main carbon source and (13)C-labeled lactate as a cosubstrate. 58 isotopomers as well as 15 positional labels of biomass compounds were quantified. Applying a generally applicable mathematical model to include metabolite mass and carbon labeling balances, it is shown that pyruvate carboxylase contributed 91 +/- 7% to C(3) carboxylation. The total in vivo carboxylation rate of 1.28 +/- 0.14 mmol/g dry weight/h exceeds the demand of carboxylated metabolites for biosyntheses 3-fold. Excess oxaloacetate was recycled to phosphoenolpyruvate by phosphoenolpyruvate carboxykinase. This shows that the reactions at the anaplerotic node might serve additional purposes other than only providing C(4) metabolites for biosynthesis.  相似文献   

17.
This work describes a comprehensive mathematical model of the human respiratory control system which incorporates the central mechanisms for predicting sleep-induced changes in chemical regulation of ventilation. The model integrates four individual compartments for gas storage and exchange, namely alveolar air, pulmonary blood, tissue capillary blood, body tissues, and gas transport between them. An essential mechanism in the carbon dioxide transport is its dissociation into bicarbonate and acid, where a buffering mechanism through hemoglobin is used to prevent harmfully low pH levels. In the current model, we assume high oxygen levels and consider intracellular hydrogen ion concentration as the principal respiratory control variable. The resulting system of delayed differential equations is solved numerically. With an appropriate choice of key parameters, such as velocity of blood flow and gain of a non-linear controller function, the model provides steady-state results consistent with our experimental observations measured in subjects across sleep onset. Dynamic predictions from the model give new insights into the behaviour of the system in subjects with different buffering capacities and suggest novel hypotheses for future experimental and clinical studies.  相似文献   

18.
Isocitrate dehydrogenase was purified from Hydrogenobacter thermophilus, and the corresponding gene was cloned and sequenced. The enzyme had similar structural properties to the isocitrate dehydrogenase of Escherichia coli, but differed in its catalytic properties, such as coenzyme specificity, pH dependency and kinetic parameters. Notably, the enzyme catalysed the oxidative decarboxylation of isocitrate, but not the reductive carboxylation of 2-oxoglutarate. The carboxylation reaction required the addition of cell extract and ATP-Mg, suggesting the existence of additional carboxylation factor(s). Further analysis of the carboxylation factor(s) resulted in the purification of two polypeptides. N-terminal amino acid sequencing revealed that the two polypeptides are homologues of pyruvate carboxylase with a biotinylated subunit, but do not catalyse pyruvate carboxylation. Pyruvate carboxylase was also purified, but was not active in stimulating isocitrate dehydrogenase. Isocitrate dehydrogenase, the novel biotin protein, ATP-Mg and NADH were essential for the reductive carboxylation of 2-oxoglutarate. These observations indicate that the novel biotin protein is an ATP-dependent factor, which is involved in the reverse (carboxylating) reaction of isocitrate dehydrogenase.  相似文献   

19.
The rates of the acid-catalyzed decarboxylation and amide hydrolysis of α-ketoglutaramic acid, the keto analog of glutamine, were investigated and the products of the reactions were characterized. In strong acid at 100°C, amide hydrolysis and decarboxylation occur with about equal facility, yielding α-ketoglutaric acid and 5-hydroxy-2-pyrrolidone, respectively. 5-Hydroxy-2-pyrrolidone undergoes further amide hydrolysis so that the products of complete acid hydrolysis of α-ketoglutaramic acid are ammonia (100%), carbon dioxide (50%), and approximately equal yields (50%) of α-ketoglutaric acid and succinic semialdehyde (β-formylpropionic acid). At increasing pH values, the relative rate of decarboxylation to amide hydrolysis of α-ketoglutaramic acid increases, such that, at pH values of 2 or greater, decarboxylation occurs almost exclusively. The decarboxylation product 5-hydroxy-2-pyrrolidone, was characterized chromatographically and by its infrared and pmr spectra; the compound may be regarded as the cyclized form of succinamic semialdehyde. A mechanism for the competing amide hydrolysis and decarboxylation reactions is proposed, and the potential biological significance of the decarboxylation pathway is discussed.  相似文献   

20.
Mitochondrial malate dehydrogenase (mMDH) and malic enzyme (mME) of a filarial worm Setaria digitata were studied. mMDH exhibited the highest activities in the oxidation and reduction reactions at pH 9.5 and pH 6.2, respectively, while mME did so in the malate decarboxylation reaction at pH 6.8. mME showed no detectable activity on the pyruvate carboxylation direction. The Km values for malate (1.7 mM) and oxaloacetate (0.17 mM) and the ratio of Vmax oxidation: Vmax reduction (2.73) tend to favor the oxaloacetate reduction by mMDH. mME showed a relatively high Km value of 8.3 mM, for malate decarboxylation. A drug, diethylcarbamazine citrate (DEC-C), did not change appreciably the activity of either mMDH or mME, while filarin (a drug of herbal origin) effectively inhibited mMDH. The leaf extracts of Ocimum sanctum, Lawsonia inermis and Calotropis gigantea and leaf and flower extracts of Azadirachta indica were, however, found to inhibit both mMDH and mME.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号