首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glioma is the most aggressive malignant tumor in the adult central nervous system. Abnormal long noncoding RNA (lncRNA) FOXD2-AS1 expression was associated with tumor development. However, the possible role of FOXD2-AS1 in the progression of glioma is not known. In the present study, we used in vitro and in vivo assays to investigate the effect of abnormal expression of FOXD2-AS1 on glioma progression and to explore the mechanisms. FOXD2-AS1 was upregulated in glioma tissue, cells, and sphere subpopulation. Upregulation of FOXD2-AS1 was correlated with poor prognosis of glioma. Downregulation of FOXD2-AS1 decreased cell proliferation, migration, invasion, stemness, and epithelial-mesenchymal transition (EMT) in glioma cells and inhibited tumor growth in transplanted tumor. We also revealed that FOXD2-AS1 was mainly located in cytoplasm and microRNA (miR)-185-5p both targeted FOXD2-AS1 and CCND2 messenger RNA (mRNA) 3′-untranslated region (3′-UTR). miR-185-5p was downregulated in glioma tissue, cells, and sphere subpopulation. Downregulation of miR-185-5p was closely correlated with poor prognosis of glioma patients. In addition, miR-185-5p mimics decreased cell proliferation, migration, invasion, stemness, and EMT in glioma cells. CCND2 was upregulated in glioma tissue, cells, and sphere subpopulation. Upregulation of CCND2 was closely correlated with poor prognosis of glioma patients. CCND2 knockdown decreased cell proliferation, migration, invasion, and EMT in glioma cells. In glioma tissues, CCND2 expression was negatively associated with miR-185-5p, but positively correlated with FOXD2-AS1. FOXD2-AS1 knockdown and miR-185-5p mimics decreased CCND2 expression. Inhibition of miR-185-5p suppressed FOXD2-AS1 knockdown-induced decrease of CCND2 expression. Overexpression of CCND2 suppressed FOXD2-AS1 knockdown-induced inhibition of glioma malignancy. Taken together, our findings highlight the FOXD2-AS1/miR-185-5p/CCND2 axis in the glioma development.  相似文献   

2.
Glioma proliferation is a multistep process during which a sequence of genetic and epigenetic alterations randomly occur to affect the genes controlling cell proliferation, cell death and genetic stability. microRNAs are emerging as important epigenetic modulators of multiple target genes, leading to abnormal cellular signaling involving cellular proliferation in cancers.In the present study, we found that expression of miR-195 was markedly downregulated in glioma cell lines and human primary glioma tissues, compared to normal human astrocytes and matched non-tumor associated tissues. Upregulation of miR-195 dramatically reduced the proliferation of glioma cells. Flow cytometry analysis showed that ectopic expression of miR-195 significantly decreased the percentage of S phase cells and increased the percentage of G1/G0 phase cells. Overexpression of miR-195 dramatically reduced the anchorage-independent growth ability of glioma cells. Furthermore, overexpression of miR-195 downregulated the levels of phosphorylated retinoblastoma (pRb) and proliferating cell nuclear antigen (PCNA) in glioma cells. Conversely, inhibition of miR-195 promoted cell proliferation, increased the percentage of S phase cells, reduced the percentage of G1/G0 phase cells, enhanced anchorage-independent growth ability, upregulated the phosphorylation of pRb and PCNA in glioma cells. Moreover, we show that miR-195 inhibited glioma cell proliferation by downregulating expression of cyclin D1 and cyclin E1, via directly targeting the 3′-untranslated regions (3′-UTR) of cyclin D1 and cyclin E1 mRNA. Taken together, our results suggest that miR-195 plays an important role to inhibit the proliferation of glioma cells, and present a novel mechanism for direct miRNA-mediated suppression of cyclin D1 and cyclin E1 in glioma.  相似文献   

3.
《Cancer epidemiology》2014,38(2):152-156
Background and aimAs a member of the microRNA (miR)-200 family, miR-200b has been recognized as one of the fundamental regulators of epithelial–mesenchymal transition, chemosensitivity, cell proliferation, and cell cycle. Especially in glioma, miR-200b targets the CREB1 gene and suppresses the tumor cell growth in vitro. However, its involvement in human glioma has not yet been determined. The aim of this study was to investigate the clinical significance of miR-200b expression in this disease.MethodsmiR-200b expression in 266 pairs of human gliomas and matched nonneoplastic brain tissues was measured by real-time quantitative RT-PCR assay.ResultsCompared with nonneoplastic brain tissues, the expression level of miR-200b was significantly decreased in glioma tissues (tumor vs. normal: 2.87 ± 2.05 vs. 8.78 ± 2.50, P < 0.001). Of 266 patients with gliomas, 166 (62.41%) were in low miR-200b expression group. In addition, we found that the glioma tissues from high-grade tumors (grade III and IV) had much lower miR-200b expression than glioma tissues from low grade tumors (grade I and II). Moreover, the expression level of miR-200b was positively correlated with Karnofsky performance status (KPS) scores of glioma tissues. The results of a 60-month follow-up in 266 glioma patients further demonstrated that lower miR-200b expression was correlated with worse progression-free survival and overall survival in the patients with grade III and IV gliomas. Both univariate and multivariate analyses revealed that miR-200b was an independent prognostic indicator for glioma.ConclusionThese findings prove that the decreased expression of miR-200b may be associated with malignant tumor progression and poor prognosis in patients with gliomas, suggesting the potential role of miR-200b in glioma management. miR-200b may be a novel and valuable signature for predicting the clinical outcome of patients with gliomas.  相似文献   

4.
5.
Aberrantly expressed microRNAs (miRNAs) are frequently associated with the aggressive malignant behavior of human cancers, including clear cell renal cell carcinoma (ccRCC). Based on the preliminary deep sequencing data, we hypothesized that miR-187 may play an important role in ccRCC development. In this study, we found that miR-187 was down-regulated in both tumor tissue and plasma of ccRCC patients. Lower miR-187 expression levels were associated with higher tumor grade and stage. All patients with high miR-187 expression survived 5 years, while with low miR-187 expression, only 42% survived. Suppressed in vitro proliferation, inhibited in vivo tumor growth, and decreased motility were observed in cells treated with the miR-187 expression vector. Further studies showed that B7 homolog 3 (B7-H3) is a direct target of miR-187. Over-expression of miR-187 decreased B7-H3 mRNA level and repressed B7-H3-3′-UTR reporter activity. Knockdown of B7-H3 using siRNA resulted in similar phenotype changes as that observed for overexpression of miR-187. Our data suggest that miR-187 is emerging as a novel player in the disease state of ccRCC. miR-187 plays a tumor suppressor role in ccRCC.  相似文献   

6.
7.
Prostate cancer (PCa) is one of the major health problems of the aging male. The roles of dysregulated microRNAs in PCa remain unclear. In this study, we mined the public published data and found that miR-487a-3p was significantly downregulated in 38 pairs of clinical prostate tumor tissues compared with the normal tissues. We further verified this result by in situ hybridization on tissue chip and quantitative real-time polymerase chain reaction (qRT-PCR) in PCa/normal cells. miR-487a-3p targeting of cyclin D1 (CCND1) was identified using bioinformatics, qRT-PCR and western blot analyses. The cellular proliferation, cell cycle, migration, and invasion were assessed by cell counting kit-8, flow cytometry analysis and transwell assay. We discovered that overexpression of miR-487a-3p suppressed PCa cell growth, migration, invasion by directly targeting CCND1. Knockdown of CCND1 in PCa cells showed similar results. Meanwhile, the expression level of CCND1 was significantly upregulated in the PCa tissues and cell lines, which presented negative correlation with the expression of miR-487a-3p. More important, we demonstrated significantly reduced growth of xenograft tumors of stable miR-487a-3p-overexpressed human PCa cells in nude mice. Taken together, for the first time, our results revealed that miR-487a-3p as a tumor suppressor of PCa could target CCND1. Our finding might reveal miR-487a-3p could be potentially contributed to the pathogenesis and a clinical biomarker or the new potential therapeutic target of PCa.  相似文献   

8.
Glioblastomas (GBM), the most common and aggressive type of malignant glioma, are characterized by increased invasion into the surrounding brain tissues. Despite intensive therapeutic strategies, the median survival of GBM patients has remained dismal over the last decades. In this study we examined the expression of miR-145 in glial tumors and its function in glioma cells. Using TCGA analysis and real-time PCR we found that the expression of miR-145/143 cluster was downregulated in astrocytic tumors compared to normal brain specimens and in glioma cells and glioma stem cells (GSCs) compared to normal astrocytes and neural stem cells. Moreover, the low expression of both miR-145 and miR-143 in GBM was correlated with poor patient prognosis. Transfection of glioma cells with miR-145 mimic or transduction with a lentivirus vector expressing pre-miR 145 significantly decreased the migration and invasion of glioma cells. We identified connective tissue growth factor (CTGF) as a novel target of miR-145 in glioma cells; transfection of the cells with this miRNA decreased the expression of CTGF as determined by Western blot analysis and the expression of its 3′-UTR fused to luciferase. Overexpression of a CTGF plasmid lacking the 3′-UTR and administration of recombinant CTGF protein abrogated the inhibitory effect of miR-145 on glioma cell migration. Similarly, we found that silencing of CTGF decreased the migration of glioma cells. CTGF silencing also decreased the expression of SPARC, phospho-FAK and FAK and overexpression of SPARC abrogated the inhibitory effect of CTGF silencing on cell migration. These results demonstrate that miR-145 is downregulated in glial tumors and its low expression in GBM predicts poor patient prognosis. In addition miR-145 regulates glioma cell migration by targeting CTGF which downregulates SPARC expression. Therefore, miR-145 is an attractive therapeutic target for anti-invasive treatment of astrocytic tumors.  相似文献   

9.
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive cancers in China, but the underlying molecular mechanism of ESCC is still unclear. Involvement of microRNAs has been demonstrated in cancer initiation and progression. Despite the reported function of miR-503 in several human cancers, its detailed anti-oncogenic role and clinical significance in ESCC remain undefined. In this study, we examined miR-503 expression by qPCR and found the downregulation of miR-503 expression in ESCC tissue relative to adjacent normal tissues. Further investigation in the effect of miR-503 on ESCC cell proliferation, migration, and invasion showed that enhanced expression of miR-503 inhibited ESCC aggressive phenotype and overexpression of CCND1 reversed the effect of miR-503-mediated ESCC cell aggressive phenotype. Our study further identified CCND1 as the target gene of miR-503. Thus, miR-503 functions as a tumor suppressor and has an important role in ESCC by targeting CCND1.  相似文献   

10.
11.
Wang L  Shi M  Hou S  Ding B  Liu L  Ji X  Zhang J  Deng Y 《FEBS letters》2012,586(9):1312-1317
MicroRNAs (miRNAs) exhibit tumor-specific expression signatures and play crucial roles in tumorigenesis by targeting oncogenes. Here, through analyzing the miRNA-array profiles of human glioblastoma tissues and the adjacent normal brain tissues, we found miR-483-5p was significantly down-regulated in gliomas, which was confirmed in both human glioma specimens and cell lines. The overexpression of miR-483-5p suppressed glioma cell proliferation and induced a G0/G1 arrest. In contrast, miR-483-5p inhibition promoted cell proliferation. Furthermore, by a dual-luciferase reporter assay and expression analysis, we identified extracellular signal-regulated kinase 1 (ERK1) as a direct target of miR-483-5p. ERK1 knockdown can block cell proliferation induced by miR-483-5p inhibition. Thus, our findings provide the first evidence that miR-483-5p can serve as a tumor suppressor in gliomas.  相似文献   

12.
13.
14.
Emerging evidence indicate that microRNAs (miRNAs) may play important roles in cancer. Aberrant expression of miRNAs has been frequently identified in different human malignancies, including colorectal cancer (CRC). However, the mechanism by which deregulated miRNAs impact the development of CRC remains largely elusive. In this study, we show that miR-124 is significantly down-regulated in CRC compared to adjacent non-tumor colorectal tissues. MiR-124 suppresses the expression of STAT3 by directly binding to its 3′-untranslated region (3′-UTR). Overexpression of miR-124 led to increased apoptosis of CRC cells and reduced tumor growth in vitro and in vivo. Knocking down STAT3 expression by specific siRNA suppressed the growth of CRC cells in vitro and in vivo, resembling that of miR-124 overexpression. Moreover, overexpression of STAT3 in miR-124-transfected CRC cells effectively rescued the inhibition of cell proliferation caused by miR-124. These data suggest that miR-124 serves as a tumor suppressor by targeting STAT3, and call for the use of miR-124 as a potential therapeutic tool for CRC, where STAT3 is often hyper-activated.  相似文献   

15.
Many studies have reported that circular RNAs play a vital role in the malignant progression of human cancers. However, the role and underlying mechanism of circRNAs in the development of gliomas have not been fully clarified. In this study, we found that circ_0001367 was downregulated in glioma tissues and showed a close correlation with glioma patient survival. Functional assays demonstrated that upregulation of circ_0001367 could suppress the proliferation, migration and invasion of glioma cells in vitro and inhibit glioma growth in vivo. Furthermore, bioinformatics analysis, luciferase reporter assay and RNA immunoprecipitation assay indicated that circ_0001367 can serve as a sponge for miR-431 and that miR-431 acts as an oncogene by regulating neurexin 3 (NRXN3). In addition, rescue experiments verified that circ_0001367 could regulate both the expression and function of NRXN3 in a miR-431-dependent manner. In conclusion, circ_0001367 functions as an suppressor in glioma by targeting the miR-431/NRXN3 axis and may be a promising therapeutic target against gliomas.Subject terms: CNS cancer, Long non-coding RNAs  相似文献   

16.
MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate the translation of messenger RNAs by binding their 3′-untranslated region (3′UTR). In this study, we found that miR-490-3p is significantly down-regulated in A549 lung cancer cells compared with the normal bronchial epithelial cell line. To better characterize the role of miR-490-3p in A549 cells, we performed a gain-of-function analysis by transfecting the A549 cells with chemically synthesized miR-490-3P mimics. Overexpression of miR-490-3P evidently inhibits cell proliferation via G1-phase arrest. We also found that forced expression of miR-490-3P decreased both mRNA and protein levels of CCND1, which plays a key role in G1/S phase transition. In addition, the dual-luciferase reporter assays indicated that miR-490-3P directly targets CCND1 through binding its 3′UTR. These findings indicated miR-490-3P could be a potential suppressor of cellular proliferation.  相似文献   

17.
18.
Oral squamous cell carcinoma (OSCC), the most common pathological type of oral cancer, is still a frequent malignancy with unsatisfactory prognosis. Accumulating studies have proven some microRNAs (miRNAs) can function as oncogenes in OSCC by targeting tumor suppressors. In this study, we first investigated the expression and role of tumor suppressor bridging integrator-1 (BIN1) in OSCC tissues and cells. Our results indicated that BIN1 was low expressed in the OSCC tissues and cell lines (SCC6, SCC9, SCC25, HN4, and HN6) along with miR-211 was highly expressed in OSCC tissues and cell lines, and BIN1 overexpression could evidently inhibit their proliferation, migration, and invasion abilities. Next, we used bioinformation algorithms to predict the potential miRNA targeting BIN1 and chose miR-211 for further study. miR-211, a highly expressed miRNA in OSCC cells, could specifically bind with the 3′-untranslated region (3′-UTR) of BIN1 to trigger its degradation. Addition of miR-211 inhibitor could evidently suppress the malignant behaviors of OSCC cells by upregulating BIN1 expression and inhibit the activation of the EGFR/MAPK pathway. Taken together the findings of the study indicated that miR-211 mediated BIN1 downregulation had crucial significances in OSCC, suggesting the miR-211 might be a novel potential therapeutic target for the OSCC treatment.  相似文献   

19.
20.
Gliomas such as oligodendrogliomas (ODG) and glioblastomas (GBM) are brain tumours with different clinical outcomes. Histology-based classification of these tumour types is often difficult. Therefore the first aim of this study was to gain microRNA data that can be used as reliable signatures of oligodendrogliomas and glioblastomas. We investigated the levels of 282 microRNAs using membrane-array hybridisation and real-time PCR in ODG, GBM and control brain tissues. In comparison to these control tissues, 26 deregulated microRNAs were identified in tumours and the tissue levels of seven microRNAs (miR-21, miR-128, miR-132, miR-134, miR-155, miR-210 and miR-409-5p) appropriately discriminated oligodendrogliomas from glioblastomas. Genomic, epigenomic and host gene expression studies were conducted to investigate the mechanisms involved in these deregulations. Another aim of this study was to better understand glioma physiopathology looking for targets of deregulated microRNAs. We discovered that some targets of these microRNAs such as STAT3, PTBP1 or SIRT1 are differentially expressed in gliomas consistent with deregulation of microRNA expression. Moreover, MDH1, the target of several deregulated microRNAs, is repressed in glioblastomas, making an intramitochondrial-NAD reduction mediated by the mitochondrial aspartate-malate shuttle unlikely. Understanding the connections between microRNAs and bioenergetic pathways in gliomas may lead to identification of novel therapeutic targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号