首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The mutation of R273→H in the p53 core domain (p53-CD) is one of the most common mutations found in human cancers. Although the 273H p53-CD retains the wild-type conformation and stability, it lacks sequence-specific DNA binding, a transactivation function and growth suppression. However, mutating T284→R in the 273H p53-CD restores the DNA binding affinity, and transactivation and tumour suppressor functions. Since X-ray/NMR structures of DNA-free or DNA-bound mutant p53-CD molecules are unavailable, the factors governing the loss and rescue of sequence-specific DNA binding in the 273H and 273H+284R p53-CD, respectively, are unclear. Hence, we have carried out molecular dynamics (MD) simulations of the wild-type, single mutant and double mutant p53-CD, free and DNA bound, in the presence of explicit water molecules. Based on the MD structures, the DNA-binding free energy of each p53 molecule has been computed and decomposed into component energies and contributions from the interface residues. The wild-type and mutant p53-CD MD structures were found to be consistent with the antibody-binding, X-ray and NMR data. The predicted DNA binding affinity and specificity of both mutant p53-CDs were also in accord with experimental data. The non-detectable DNA binding of the 273H p53-CD is due mainly to the disruption of a hydrogen-bonding network involving R273, D281 and R280, leading to a loss of major groove binding by R280 and K120. The restoration of DNA binding affinity and specificity of the 273H+284R p53-CD is due mainly to the introduction of another DNA-binding site at position 284, leading to a recovery of major groove binding by R280 and K120. The important role of water molecules and the DNA major groove conformation as well as implications for structure-based linker rescue of the 273H p53-CD DNA-binding affinity are discussed.  相似文献   

2.
Molecular Mechanics-Generalized Born-Solvent Accessibility free energy calculations were used to analyse DNA binding affinity of 1-substituted carbazolyl-3,4-dihydro-β-carboline molecules. In this study, DNA structure with sequence of d(CGATCG)2 was used for simulations. 15 ns molecular dynamics simulations of the studied complexes were performed. The calculated free energy was compared with experimental antitumor activity (IC50). The predicted free energies decreased with the increase of IC50 values. It was shown that molecules 1–6 bind to DNA via intercalation mode, while molecules 7–9 bind through groove binding mode. Also, it was found that the vdW energy term (ΔEvdW) and the non-polar desolvation energy (ΔGSA) are the favorable terms for binding energy, whereas net electrostatic energies (ΔEele + ΔGGB) and conformational entropy energy (TΔS) are unfavorable ones.  相似文献   

3.
Molecular dynamics simulations have been performed on netropsin in two different charge states and on distamycin binding to the minor groove of the DNA duplex d(CGCGAAAAACGCG)·d(CGCGTTTTTCGCG). The relative free energy of binding of the two non-covalently interacting ligands was calculated using the thermodynamic integration method and reflects the experimental result. From 2 ns simulations of the ligands free in solution and when bound to DNA, the mobility and the hydrogen-bonding patterns of the ligands were studied, as well as their hydration. It is shown that even though distamycin is less hydrated than netropsin, the loss of ligand–solvent interactions is very similar for both ligands. The relative mobilities of the ligands in their bound and free forms indicate a larger entropic penalty for distamycin when binding to the minor groove compared with netropsin, partially explaining the lower binding affinity of the distamycin molecule. The detailed structural and energetic insights obtained from the molecular dynamics simulations allow for a better understanding of the factors determining ligand–DNA binding.  相似文献   

4.
This study investigates the effect of Mg(2+) bound to the DNA major groove on DNA structure and dynamics. The analysis of a comprehensive dataset of B-DNA crystallographic structures shows that divalent cations are preferentially located in the DNA major groove where they interact with successive bases of (A/G)pG and the phosphate group of 5'-CpA or TpG. Based on this knowledge, molecular dynamics simulations were carried out on a DNA oligomer without or with Mg(2+) close to an ApG step. These simulations showed that the hydrated Mg(2+) forms a stable intra-strand cross-link between the two purines in solution. ApG generates an electrostatic potential in the major groove that is particularly attractive for cations; its intrinsic conformation is well-adapted to the formation of water-mediated hydrogen bonds with Mg(2+). The binding of Mg(2+) modulates the behavior of the 5'-neighboring step by increasing the BII (ε-ζ>0°) population of its phosphate group. Additional electrostatic interactions between the 5'-phosphate group and Mg(2+) strengthen both the DNA-cation binding and the BII character of the 5'-step. Cation binding in the major groove may therefore locally influence the DNA conformational landscape, suggesting a possible avenue for better understanding how strong DNA distortions can be stabilized in protein-DNA complexes.  相似文献   

5.
Developing a molecular view of the thermodynamics of DNA recognition is essential to the design of ligands for regulating gene expression. In a first comprehensive attempt at sketching an atlas of DNA-drug energetics, we present here a detailed thermodynamic view of minor-groove recognition by small molecules via a computational study on 25 DNA-drug complexes. The studies are configured in the MMGBSA (Molecular Mechanics-Generalized Born-Solvent Accessibility) framework at the current state of the art and facilitate a structure-energy component correlation. Analyses were conducted on both energy minimized structures of DNA-drug complexes and molecular dynamics trajectories developed for the purpose of this study. While highlighting the favorable role of packing, shape complementarity, and van der Waals and hydrophobic interactions of the drugs in the minor groove in conformity with experiment, the studies reveal an interesting annihilation of favorable electrostatics by desolvation. Structural modifications attempted on the ligands point to the requisite physico-chemical factors for obtaining improved binding energies. Hydrogen bonds predicted to be important for specificity based on structural considerations do not always turn out to be significant to binding in post facto analyses of molecular dynamics trajectories, which treat thermal averaging, solvent, and counterion effects rigorously. The strength of the hydrogen bonds retained between the DNA and drug during the molecular dynamics simulations is approximately 1kcal/mol. Overall, the study reveals the compensatory nature of the diverse binding free energy components, possible threshold limits for some of these properties, and the availability of a computationally viable free energy methodology which could be of value in drug-design endeavors.  相似文献   

6.
The calculation of absolute binding affinities for protein‐inhibitor complexes remains as one of the main challenges in computational structure‐based ligand design. The present work explored the calculations of surface fractal dimension (as a measure of surface roughness) and the relationship with experimental binding free energies of Plasmepsin II complexes. Plasmepsin II is an attractive target for novel therapeutic compounds to treat malaria. However, the structural flexibility of this enzyme is a drawback when searching for specific inhibitors. Concerning that, we performed separate explicitly solvated molecular dynamics simulations using the available high‐resolution crystal structures of different Plasmepsin II complexes. Molecular dynamics simulations allowed a better approximation to systems dynamics and, therefore, a more reliable estimation of surface roughness. This constitutes a novel approximation in order to obtain more realistic values of fractal dimension, because previous works considered only x‐ray structures. Binding site fractal dimension was calculated considering the ensemble of structures generated at different simulation times. A linear relationship between binding site fractal dimension and experimental binding free energies of the complexes was observed within 20 ns. Previous studies of the subject did not uncover this relationship. Regression model, coined FD model, was built to estimate binding free energies from binding site fractal dimension values. Leave‐one‐out cross‐validation showed that our model reproduced accurately the absolute binding free energies for our training set (R2 = 0.76; <|error|> =0.55 kcal/mol; SDerror = 0.19 kcal/mol). The fact that such a simple model may be applied raises some questions that are addressed in the article.  相似文献   

7.
We describe how one can apply molecular modelling methods, based on the molecular mechanics/generalised Born (MM/GB) approach, to the prediction of the relative affinity of DNA minor groove binding ligands for different DNA sequences. We discuss the theoretical background to the technique, some variations in the methodology that can be employed, and illustrate its application through a case study: analysis of the energetics of binding of Hoechst 33258 to the minor groove of various A/T-rich DNA duplexes. We show how the underpinning molecular dynamics (MD) simulations can be set up, how they can be analysed for satisfactory behaviour, and various approaches to extracting thermodynamics of drug binding from them. We find that while certain elaborations to the basic MM/GB method can improve the agreement with experimental data (e.g., calculating the DNA perturbation energy), others have to be analysed with more caution (e.g., calculating configurational entropy changes). Overall, these methodologies can rank the affinity of a ligand for the minor groove of different DNA sequences fairly well, but the calculation of absolute binding affinities is not very reliable.  相似文献   

8.
The width of the DNA minor groove varies with sequence and can be a major determinant of DNA shape recognition by proteins. For example, the minor groove within the center of the Fis–DNA complex narrows to about half the mean minor groove width of canonical B-form DNA to fit onto the protein surface. G/C base pairs within this segment, which is not contacted by the Fis protein, reduce binding affinities up to 2000-fold over A/T-rich sequences. We show here through multiple X-ray structures and binding properties of Fis–DNA complexes containing base analogs that the 2-amino group on guanine is the primary molecular determinant controlling minor groove widths. Molecular dynamics simulations of free-DNA targets with canonical and modified bases further demonstrate that sequence-dependent narrowing of minor groove widths is modulated almost entirely by the presence of purine 2-amino groups. We also provide evidence that protein-mediated phosphate neutralization facilitates minor groove compression and is particularly important for binding to non-optimally shaped DNA duplexes.  相似文献   

9.
The hERG potassium channel is of major pharmaceutical importance, and its blockade by various compounds, potentially causing serious cardiac side effects, is a major problem in drug development. Despite the large amounts of existing biochemical data on blockade of hERG by drugs and druglike compounds, relatively little is known regarding the structural basis of binding of blockers to the channel. Here, we have used a recently developed homology model of hERG to conduct molecular docking experiments with a series of channel blockers, followed by molecular dynamics simulations of the complexes and evaluation of binding free energies with the linear interaction energy method. The calculations yield a remarkably good agreement with experimental binding affinities and allow for a rationalization of three-dimensional structure-activity relationships in terms of a number of key interactions. Two main interaction regions of the channel are thus identified with implications for further mutagenesis experiments and design of new compounds.  相似文献   

10.
The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequences in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. The affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.  相似文献   

11.
The complex of the minor groove binding drug distamycin and the B-DNA oligomer d-(CGCAAATTTGCG) was investigated by molecular dynamics simulations. For this purpose, accurate atomic partial charges of distamycin were determined by extended quantum chemical calculations. The complex was simulated without water but with hydrated counterions. The oligomer without the drug was simulated in the same fashion and also with 1713 water molecules and sodium counterions. The simulations revealed that the binding of distamycin in the minor groove induces a stiffening of the DNA helix. The drug also prevents a transition from B-DNA to A-DNA that was found to occur rapidly (30 ps) in the segment without bound distamycin in a water-free environment but not in simulations including water. In other simulations, we investigated the relaxation processes after distamycin was moved from its preferred binding site, either radially or along the minor groove. Binding in the major groove was simulated as well and resulted in a bound configuration with the guanidinium end of distamycin close to two phosphate groups. We suggest that, in an aqueous environment, tight hydration shells covering the DNA backbone prevent such an arrangement and thus lead to distamycin's propensity for minor groove binding.  相似文献   

12.
DNA sequences in regulatory regions and in telomers at the ends of chromosomes frequently contain tandem repeats of guanine nucleotides that can form stacked structures stabilized by Hoogsten pairing and centrally bound monovalent cations. The replication and elongation of telomeres requires the disruption of these G-quadruplex structures. Hence, drug molecules such as gold (Au)-carbene that stabilize G-quadruplexes may also interfere with the elongation of telomeres and, in turn, could be used to control cell replication and growth. To better understand the molecular mechanism of Au-carbene binding to G-quadruplexes, we employed molecular dynamics simulations and free energy simulations. Whereas very restricted mobility of two Au-carbene ligands was found upon binding as a doublet to one side of the G-quadruplex, much larger translational and orientational mobility was observed for a single Au-carbene binding at the second G-quadruplex surface. Comparative simulations on duplex DNA in the presence of Au-carbene ligands indicates a preference for the minor groove and weaker unspecific and more salt-dependent binding than to the G-quadruplex surface. Analysis of energetic contributions reveals a dominance of nonpolar and van der Waals interactions to drive binding. The simulations can also be helpful for proposing possible modifications that could improve Au-carbene affinity and specificity for G-quadruplex binding.  相似文献   

13.
The binding of 9-hydroxyellipticine to calf thymus DNA, poly[d(A-T)]2, and poly-[d(G-C)]2 has been studied in detail by means of CD, linear dichroism, resonance light scattering, and molecular dynamics. The transition moment polarizations of 9-hydroxyelliptiycine were determined in polyvinyl alcohol stretched film. Spectroscopic solution studies of the DNA/drug complex are combined with theoretical CD calculations using the final 50 ps of a series of molecular dynamics simulations as input. The spectroscopic data shows 9-hydroxyellipticine to adopt two main binding modes, one intercalative and the other a stacked binding mode involving the formation of drug oligomers in the DNA major groove. Analysis of the intercalated binding mode in poly[d(A-T)]2 suggests the 9-hydroxyellipticine hydroxyl group lies in the minor groove and hydrogen bonds to water with the pyridine ring protruding into the major groove. The stacked binding mode was examined using resonance light scattering and it was concluded that the drug was forming small oligomer stacks rather than extended aggregates. Reduced linear dichroism measurements suggested a binding geometry that precluded a minor groove binding mode where the plane of the drug makes a 45° angle with the plane of the bases. Thus it was concluded that the drug stacks in the major groove. No obvious differences in the mode of binding of 9-hydroxyellipticine were observed between different DNA sequences; however, the stacked binding mode appeared to be more favorable for calf thymus DNA and poly[d(G-C)]2 than for poly[d(A-T)]2, an observation that could be explained by the slightly greater steric hindrance of the poly[d(A-T)]2 major groove. A strong concentration dependence was observed for the two binding modes where intercalation is favored at very low drug load, with stacking interactions becoming more prominent as the drug concentration is increased. Even at DNA : drug mixing ratios of 70:1 the stacked binding mode was still important for GC-rich DNAs. © 1998 John Wiley & Sons, Inc. Biopoly 46: 127–143, 1998  相似文献   

14.
15.
Curcumin is a natural phytochemical that exhibits a wide range of pharmacological properties, including antitumor and anticancer activities. The similarity in the shape of curcumin to DNA minor groove binding drugs is the motivation for exploring its binding affinity in the minor grooves of DNA sequences. Interactions of curcumin with DNA have not been extensively examined, while its pharmacological activities have been studied and documented in depth. Curcumin was docked with two DNA duplexes, d(GTATATAC)2 and d(CGCGATATCGCG)2, and molecular dynamics simulations of the complexes were performed in explicit solvent to determine the stability of the binding. In all systems, the curcumin is positioned in the minor groove in the A·T region, and was stably bound throughout the simulation, causing only minor modifications to the structural parameters of DNA. Water molecules were found to contribute to the stability of the binding of the ligand. Free energy analyses of the complexes were performed with MM-PBSA, and the binding affinities that were calculated are comparable to the values reported for other similar nucleic acid–ligand systems, indicating that curcumin is a suitable natural molecule for the development of minor groove binding drugs.  相似文献   

16.
A series of cationic porphyrin–anthraquinone hybrids bearing either pyridine, imidazole, or pyrazole rings at the meso-positions have been investigated for their interaction with DNA G-quadruplexes by employing molecular docking and molecular dynamics simulations. Three types of DNA G-quadruplexes were utilized, which comprise parallel, antiparallel, and mixed hybrid topologies. The porphyrin hybrids have a preference to bind with parallel and mixed hybrid structures compared to the antiparallel structure. This preference arises from the end stacking of porphyrin moiety following G-stem and loop binding of anthraquinone tail, which is not found in the antiparallel due to the presence of diagonal and lateral loops that crowd the G-quartet. The binding to the antiparallel, instead, occurred with poorer affinity through both the loop and wide groove. All sites of porphyrin binding were confirmed by 6 ns molecular dynamics simulation, as well as by the negative value of the total binding free energies that were calculated using the MMPBSA method. Free energy analysis shows that the favorable contribution came from the electrostatic term, which supposedly originated from the interaction of either cationic pyridinium, pyrazole, or imidazole groups and the anionic phosphate backbone, and also from the van der Waals energy, which primarily contributed through end stacking interaction.  相似文献   

17.
The antitumor drug ditercalinium is a rare example of a noncovalent DNA-binding ligand that forms bisintercalation complexes via the major groove of the double helix. Previous structural studies have revealed that the two connected pyridocarbazolium chromophores intercalate into DNA with the positively charged bis(ethylpiperidinium) linking chain oriented to the wide groove side of the helix. Although the interaction of ditercalinium with short oligonucleotides containing 4-6 contiguous GC base pairs has been examined in detail by biophysical and theoretical approaches, the sequence preference for ditercalinium binding to long DNA fragments that offer a wide variety of binding sites has been investigated only superficially. Here we have investigated both sequence preferences and possible molecular determinants of selectivity in the binding of ditercalinium to DNA, primarily using methods based upon DNase I footprinting. A range of multisite DNA substrates, including several natural restriction fragments and different PCR-generated fragments containing unconventional bases (2,6-diaminopurine, inosine, uridine, 5-fluoro- and 5-methylcytosine, 7-deazaguanine, 7-deazaadenine, and N(7)-cyanoboranoguanine), have been employed to show that ditercalinium selectively recognizes certain GC-rich sequences in DNA and to identify some of the factors which affect its DNA-binding sequence selectivity. Specifically, the footprinting data have revealed that the 2-amino group on the purines or the 5-methyl group on the pyrimidines is not essential for the formation of ditercalinium-DNA complexes whereas the major groove-oriented N(7) of guanine does appear as a key element in the molecular recognition process. The loss of N(7) at guanines but not adenines is sufficient to practically abolish sequence-selective binding of ditercalinium to DNA. Thus, as expected for a major groove binding drug, the N(7) of guanine is normally required for effective complex formation with GC base pairs, but interestingly the substitution of the N(7) with a relatively bulky cyanoborane group does not markedly affect the sequence recognition process. Therefore, the hydrogen bond accepting capability at N(7) of guanines is not sufficient to explain the GC-selective drug-DNA association, and the implications of these findings are considered.  相似文献   

18.
The conformational deformability of nucleic acids can influence their function and recognition by proteins. A class of DNA binding proteins including the TATA box binding protein binds to the DNA minor groove, resulting in an opening of the minor groove and DNA bending toward the major groove. Explicit solvent molecular dynamics simulations in combination with the umbrella sampling approach have been performed to investigate the molecular mechanism of DNA minor groove deformations and the indirect energetic contribution to protein binding. As a reaction coordinate, the distance between backbone segments on opposite strands was used. The resulting deformed structures showed close agreement with experimental DNA structures in complex with minor groove-binding proteins. The calculated free energy of minor groove deformation was approximately 4-6 kcal mol(-1) in the case of a central TATATA sequence. A smaller equilibrium minor groove width and more restricted minor groove mobility was found for the central AAATTT and also a significantly ( approximately 2 times) larger free energy change for opening the minor groove. The helical parameter analysis of trajectories indicates that an easier partial unstacking of a central TA versus AT basepair step is a likely reason for the larger groove flexibility of the central TATATA case.  相似文献   

19.
Anti-cancer drugs, such as cisplatin and oxaliplatin, covalently bind to adjacent guanine bases in DNA to form intra-strand adducts. Differential recognition of drug–DNA adducts by the protein HMGB1a has been related to the differences in efficacy of these drugs in tumours. Additionally, the bases flanking the adduct (the sequence context) also have a marked effect on HMGB1a binding affinity. We perform atomistic molecular dynamics simulations of DNA with cisplatin and oxaliplatin adducts in four sequence contexts (AGGC, CGGA, TGGA and TGGT) in the absence and presence of HMGB1a. The structure of HMGB1a-bound drug–DNA molecules is independent of sequence and drug identity, confirming that differential recognition cannot be explained by the protein-bound structure. The differences in the static and conformational dynamics of the drug–DNA structures in the absence of the protein explain some but not all trends in differential binding affinity of HMGB1a. Since the minor groove width and helical bend of all drug–DNA molecules in the unbound state are lower than the protein-bound state, HMGB1a must actively deform the DNA during binding. The thermodynamic pathway between the unbound and protein-bound states could be an additional factor in the binding affinity of HMGB1a for drug–DNA adducts in various sequence contexts.  相似文献   

20.
A highly conserved and ubiquitous protein known as LC8 binds over twenty different partners, characteristic of a molecular hub (Barbar, 2008 Biochemistry, 47, 503-508). Structural studies of LC8 complexes with binding partners having diverse recognition sequences show that the same binding groove of LC8 accommodates the various binding motifs. Here we use thermodynamics and dynamics measurements of LC8 complexes to group LC8 binding partners in two categories: those whose binding is enthalpically driven and those that are entropically favored. Peptides that are enthalpically driven completely silence the millisecond-microsecond relaxation signal, suggesting a significant rigidifying of the binding groove, while peptides in the entropically favored group exhibit the same conformational dynamics as the free protein, suggesting that the peptide sits loosely in the binding groove and so retains flexibility of the groove, and presumably of the bound peptide. The inherent disorder in the LC8 binding groove and in LC8 binding partners allows both types of binding, accounts for the lack of a conserved recognition consensus motif and underlies the binding specificity and broad selectivity observed in LC8 binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号