首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Expression of MACC1 (metastasis-associated in colon cancer-1) protein is associated with metastasis of various human cancers. This study analyzed MACC1 protein expression in hepatocellular carcinoma (HCC) tissue specimens and then investigated the effects of MACC1 knockdown on HCC cell migration and invasion, and gene expression levels. Sixty pairs of HCC and adjacent normal liver tissues from HCC patients were analyzed for MACC1 expression immunohistochemically. The HCC cell lines Hep3B, Huh7, MHCC97H, SMMC-7721, Bel-7402, and HepG2 and the normal liver cell line LO2 were used to assess expressions of MACC1 mRNA and MACC1 protein using qRT-PCR and western blot, respectively. MACC1 short hairpin RNA (shRNA) was used to knockdown MACC1 protein expression in Huh7 cells. Changes in the tumor phenotype of these cells were analyzed with wound healing assay and invasion assays, and differences in gene expression were evaluated via western blot. Immunofluorescence was used to locate MACC1 protein in the above cell lines. MACC1 was highly expressed in HCC tissues and the nuclear expression of MACC1 protein was associated with poor tumor differentiation and intrahepatic metastasis or portal invasion. Moreover, MACC1 mRNA and MACC1 protein was also expressed in HCC cell lines. Immunostaining showed that MACC1 protein was localized in both nuclei and cytoplasm of HCC cell lines and the nuclear localization of MACC1 protein was associated with increased aggressiveness of HCC in cell lines. Knockdown of MACC1 expression using MACC1-shRNA reduced Huh7 cell migration and invasion abilities, which was associated with downregulation of MMP2, MMP9, and c-Met proteins in Huh7 cells. Localization of MACC1 protein to the nucleus may predict HCC progression. Knockdown of MACC1 expression using MACC1 shRNA warrants further evaluation as a novel therapeutic strategy for control of HCC.  相似文献   

3.
SERPINB1 (serine protease inhibitor, clade B, member1) is a member of the SERPINB family. Recent studies suggested that SERPINB1 may suppress the migration and invasion of lung and breast cancers. In this study, we investigated a possible involvement of SERPINB1 in the regulation of hepatocellular carcinoma metastasis (HCC). The expression of SERPINB1 was evaluated using western blot analysis in 8 paired fresh HCC specimens and immunohistochemistrical assay on 67 paraffin-embedded HCC slices. SERPINB1 was downregulated in HCC specimens and correlatively related with two clinicopathologic features of HCC, metastasis (P = 0.000) and vein invasion (P = 0.006). Univariate and multivariate survival analyses showed a lower level of SERPINB1 expression is associated with poor prognosis and clinical outcome (P = 0.001). In addition, small interfering RNA targeting SERPINB1 was used to knock down the expression of SERPINB1 in Huh7 and BEL-7404 cells. We showed that interference of SERPINB1 promoted migration and invasion of HCC cells, while cell proliferation was not affected. Finally, we observed an apparent increase in the level of active matrix metalloproteinase-2 (MMP2) after SERPINB1 knockdown, implying that SERPINB1 might participate in the regulation of HCC metastasis through modulating the activation of matrix metalloproteinases. Overall, our results suggested an inhibitory role of SERPINB1 in the migration and invasion of HCC, implying that SERPINB1 might be a potential prognostic indicator of HCC metastasis.  相似文献   

4.
COP9 signalosome subunit 5 (CSN5) has been involved in the progression of diverse human cancers. MMP2 plays an important role in the metastasis of cancer cells. However, the roles and relationship of in pancreatic cancer (PC) is still unknown. Here, our data shown that both CSN5 and MMP2 were significantly upregulated in PC compared with the corresponding adjacent tissues, where a positive correlation in their expression and associated malignant characteristics were found. Further, silencing of CSN5 expression markedly inhibited PC invasion and metastasis in vitro and in vivo, accompanied by decreased MMP2 expression. Moreover, the anti-metastasis role of CSN5 silence was reversed by MMP2 overexpression, whereas knockdown of MMP2 decreased PC metastasis driven by upregulation of CSN5. Further investigation revealed that CSN5 regulated MMP2 expression via activation of FOXM1 in PC cells. Mechanistically, CSN5 directly bound FOXM1 and decreased its ubiquitination to enhance the protein stability of FOXM1. Taken together, the results indicate that CSN5 can contribute to PC invasion and metastasis through activation of FOXM1/MMP2 axis.  相似文献   

5.
Dysregulation of microRNAs (miRNAs) is actively involved in the pathogenesis and tumorigenicity of hepatocellular carcinoma (HCC). miR-489 was found to play either oncogenic or tumor suppressive roles in human cancers. Recent study reported that the levels of miR-489 in late recurrent HCC patients were evidently higher than that in early recurrent cases, suggesting that miR-489 may function as a tumor suppressive miRNA in HCC. Yet, the clinical value and biological function of miR-489 remain rarely known in HCC. Here, we presented that miR-489 level in HCC tissues was notably reduced compared to matched non-cancerous specimens. Its decreased level was evidently correlated with adverse clinical parameters and poor prognosis of HCC patients. Accordingly, the levels of miR-489 were obviously down-regulated in HCC cells. Ectopic expression of miR-489 in HCCLM3 and MHCC97H cells prominently inhibits the migration and invasion of tumor cells and reduced lung metastases in vivo, while miR-489 knockdown increased these behaviors of HepG2 and MHCC97L cells. Mechanically, miR-489 negatively regulated matrix metalloproteinase-7 (MMP7) abundance in HCC cells. Herein, MMP7 was found to be a downstream molecule of miR-489 in HCC. An inversely correlation between miR-489 and MMP7 was confirmed in HCC specimens. MMP7 knockdown prohibited cell migration and invasion while MMP7 overexpression showed opposite effects on HCC cells. Furthermore, restoration of MMP7 expression could abrogate the anti-metastatic effects of miR-489 on HCCLM3 cells with enhanced cell migration and invasion. Altogether, miR-489 potentially acts as a prognostic predictor and a drug-target for HCC patients.  相似文献   

6.
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality worldwide. Despite progress in diagnostics and treatment of HCC, its prognosis remains poor because the molecular mechanisms underlying hepatocarcinogenesis are not well understood. In the study, we focused on identifying the role of miRNAs in HCC progression. miRNA microarray was used to analyze the differentially expressed miRNAs, and the results were validated by qPCR. We found that the miR-150-5p expression is down-regulated in HCC tissues compared with pair non-tumor tissues. miR-150-5p expression is also decreased in metastatic cancer tissues compared with pair primary tissues, indicating that miR-150-5p may be involved in HCC metastasis. Functionally, miR-150-5p inhibition significantly promotes hepatoma cell migration and invasion, whereas miR-150-5p overexpression suppresses cancer cell migration and invasion in vitro. The matrix metalloproteinase 14 (MMP14) is identified as a new target gene of miR-150-5p. miR-150-5p markedly inhibits MMP14 expression in hepatoma cells, and miR-150-5p expression is negative correlation with MMP14 expression in vivo. More important, re-expression of MMP14 in hepatoma cells partially reverses the effect of miR-150-5p in inhibiting cell invasion.  相似文献   

7.
目的:探讨线粒体融合蛋白MFN1(mito-fusion 1)在肝癌转移中的作用及其机制。方法:1).采用免疫组化实验检测15对肝癌转移灶组织与原发灶组织中MFN1的表达,以明确肝癌转移时是否伴有MFN1表达的改变。2).采用si RNA (small interference RNA)下调肝癌细胞中MFN1的表达后,提高Transwell迁移实验和Transwell侵袭实验分别检测其迁移和侵袭能力,通过实时荧光定量PCR (Quantitative Real-time PCR,qRT-PCR)和Western blot实验分别检测基质金属蛋白酶1 (matrix metalloproteinase 1,MMP1)、MMP2、MMP7及MMP9的m RNA和蛋白表达。结果:1)肝癌转移灶组织中MFN1表达显著低于原发灶组织(P0.05)。2).下调MFN1表达后,肝癌细胞的迁移和侵袭能力显著升高,MMP7的表达显著增加,而MMP1、MMP2与MMP9的表达无明显变化。结论:线粒体融合蛋白MFN1在肝癌转移组织中表达显著降低,可能通过激活MMP7表达,促进肝癌细胞侵袭和转移。  相似文献   

8.
Hepatocellular carcinoma (HCC) is an aggressive tumor, with a high mortality rate due to late symptom presentation and frequent tumor recurrences and metastasis. It is also a rapidly growing tumor supported by different metabolic mechanisms; nevertheless, the biological and molecular mechanisms involved in the metabolic reprogramming in HCC are unclear. In this study, we found that pyruvate kinase M2 (PKM2) was frequently over-expressed in human HCCs and its over-expression was associated with aggressive clinicopathological features and poor prognosis of HCC patients. Furthermore, knockdown of PKM2 suppressed aerobic glycolysis and cell proliferation in HCC cell lines in vitro. Importantly, knockdown of PKM2 hampered HCC growth in both subcutaneous injection and orthotopic liver implantation models, and reduced lung metastasis in vivo. Of significance, PKM2 over-expression in human HCCs was associated with a down-regulation of a liver-specific microRNA, miR-122. We further showed that miR-122 interacted with the 3UTR of the PKM2 gene. Re-expression of miR-122 in HCC cell lines reduced PKM2 expression, decreased glucose uptake in vitro, and suppressed HCC tumor growth in vivo. Our clinical data and functional studies have revealed a novel biological mechanism involved in HCC metabolic reprogramming.  相似文献   

9.
Mammalian enabled (MENA), usually known as a direct regulator of microfilament polymerization and bundling, promotes metastasis in various cancers. Here we focus on the role of MENA in hepatocellular carcinoma (HCC) metastasis and the relevant mechanism from the view of RhoA activity regulation. By HCC tissue microarray analysis, we found that MENA expression was positively associated with satellite lesions (P<0.01) and vascular invasion (P<0.01). Cases with membrane reinforcement of MENA staining in HCC tissues had significantly higher rates of early recurrence in the intermediate MENA expression group. Knockdown of MENA significantly suppressed HCC cell migration and invasion in vitro, as well as their intrahepatic and distant metastasis in vivo. Knockdown of MENA also decreased filopodia and stress fibers in SMMC-7721 cells. Furthermore, a decrease of RhoA activity was detected by a pull-down assay in SMMC-7721-shMENA cells. The ROCK inhibitor, Y-27632, suppressed migration of both MENA knockdown SMMC-7721 cells and control cells, but diminished their difference. Thus, our findings suggest that MENA promotes HCC cell motility by activating RhoA.  相似文献   

10.
11.
Sulfiredoxin 1 (SRXN1) is a pivotal regulator of the antioxidant response in eukaryotic cells. However, the role of SRXN1 in hepatocellular carcinoma (HCC) is far from clear. The present study aims to elucidate whether SRXN1 participates in tumorigenesis and metastasis of HCC and to determine the molecular mechanisms. We found that SRXN1 expression was up‐regulated in HCC tissue samples and correlated with poor prognosis in HCC patients. We also observed that SRXN1 knockdown by transient siRNA transfection inhibited HCC cell proliferation, migration and invasion. Overexpression of SRXN1 increased HCC cell migration and invasion. B‐cell translocation gene 2 (BTG2) was identified as a downstream target of SRXN1. Mechanistic studies revealed that SRXN1‐depleted reactive oxygen species (ROS) modulated migration and invasion of HCC cells. In addition, the ROS/p65/BTG2 signalling hub was found to regulate the epithelial‐mesenchymal transition (EMT), which mediates the pro‐metastasis role of SRXN1 in HCC cells. In vivo experiments showed SRXN1 promotes HCC tumour growth and metastasis in mouse subcutaneous xenograft and metastasis models. Collectively, our results revealed a novel pro‐tumorigenic and pro‐metastatic function of SRXN1 in HCC. These findings demonstrate a rationale to exploit SRXN1 as a therapeutic target effectively preventing metastasis of HCC.  相似文献   

12.
MicroRNAs (miRNAs) are a class of small, non-coding RNA molecules that are often found at chromosomal breakpoints and play a vital role in human cancer. Our previous study found that miR-550a, a frequently amplified miRNA on 7p14.3, was upregulated in hepatocellular carcinoma (HCC). However, the possible functions and molecular mechanisms of miR-550a in HCC remain unknown. In this study, gain-of-function and loss-of-function assays revealed that miR-550a markedly promoted HCC cell migration and invasion. In addition, we discovered that cytoplasmic polyadenylation element binding protein 4 (CPEB4) was a potential target of miR-550a in HCC. Further analyses showed that knockdown of CPEB4 expression significantly facilitated HCC cell migration and invasion, which phenocopied the effects of miR-550a on HCC cells. Moreover, a decrease in CPEB4 expression mediated miR-550a-induced liver cancer cell migration and invasion. Interestingly, CPEB4 is frequently downregulated in HCC, and its expression levels correlate with the overall survival of HCC patients. Together, these results suggested that this newly identified miR-550a-CPEB4 axis may be involved in HCC cell metastasis. Moreover, the expression levels of CPEB4 could be used to predict outcomes in HCC patients. Our findings provide novel potential targets for HCC therapy and prognosis.  相似文献   

13.
E‐cadherin loss is a key biological mechanism in tumour invasion. As a main regulator of epithelial‐mesenchymal transition (EMT) mechanism‐mediated invasion and metastasis, Twist1 plays an important role through its regulation of E‐cadherin expression. However, whether or not Twist2 has the same function in tumour metastasis remains unclear. The purpose of this study is to investigate the expressions and different roles of Twist1 and Twist2 in human hepatocellular carcinoma (HCC). The expressions of Twist1 and Twist2 in HCC tissue were evaluated by immunohistochemical staining. The role of Twist1 and Twist2 in invasiveness was also evaluated in vitro by using HCC cell lines. Twist1 nuclear overexpression is found to be correlated with HCC metastasis, and its expression is negatively correlated with E‐cadherin expression in human tissue. Twist2, a Twist1 homology protein, only expresses in the cytoplasm and shows no significant correlation with HCC metastasis. By ectopic transfection of Twist1 and Twist2 into the HCC cells, HepG2 and PLC, Twist1 is able to down‐regulate E‐cadherin expression and promote matrix metalloproteinase (MMP) activation, specifically in MMP2 and MMP9. In functional assays, Twist1 is found to promote invasion in HepG2 and PLC cells, but the invasion ability of the groups is not affected Twist2. Our findings indicate that Twist1 induces HCC invasion via increased activity in MMPs, leading to poor clinical prognoses. The results of this study also demonstrate a novel cogitation in Twist2, which has no effect on HCC invasion and metastasis. Twist1 may contribute to HCC invasion and metastasis and may be used as a novel therapeutic target for the inhibition of HCC metastasis.  相似文献   

14.
A high level of serum alpha fetoprotein (AFP) is positively associated with human hepatocellular carcinoma (HCC) carcinogenesis and metastasis; however, the function of AFP in HCC metastasis is unknown. This study has explored the effects of AFP on regulating metastatic and invasive capacity of human HCC cells. Forty‐seven clinical patients' liver samples were collected and diagnosed; HCC cells line, Bel 7402 cells (AFP‐producing) and liver cancer cell line cells (non‐AFP‐producing) were selected to analyse the role of AFP in the metastasis of HCC cells. The results indicated that high serum concentration of AFP was positively correlated with HCC intrahepatic, lymph nodes and lung metastasis. Repressed expression of AFP significantly inhibited the capability of migration and invasion of Bel 7402 cells, expression of keratin 19 (K19), epithelial cell adhesion molecule (EpCAM), matrix metalloproteinase 2/9 (MMP2/9) and CXC chemokine receptor 4 (CXCR4) were also down‐regulated in Bel 7402 cells; migration and invasion, expression of K19, EpCAM, MMP2/9 and CXCR4 were significantly enhanced when HLE cells were transfected with AFP‐expressed vector. The results demonstrated that AFP plays a critical role in promoting metastasis of HCC; AFP promoted HCC cell invasion and metastasis via up‐regulating expression of metastasis‐related proteins. Thus, AFP may be used as a novel therapeutic target for treating HCC patients.  相似文献   

15.
A wide range of studies has demonstrated the potent anticancer activity of Chinese herbs. Here, we evaluated the anticancer activity and molecular mechanisms of Actinidia chinensis root extract (acRoots) on hepatocellular carcinoma (HCC). HepG2 HCC cells were treated with various concentrations of acRoots for 72 h and examined by mRNA expression profiling, revealing alterations in cellular immunity, inflammation, proliferation, cell cycle, and metabolic signaling responses. Further analysis of the altered genes in cellular immunity and inflammation gene clusters identified prostaglandin E receptor 3 (EP3) as a key regulator of gene expression in response to acRoots. Further analysis revealed inhibition of cell growth, migration, and invasion in HCC in response to acRoots, along with increased apoptosis due to downregulation of EP3 expression. Treatment with acRoots and EP3 antagonist L-798106 led to decreases in VEGF, EGFR, MMP2, and MMP9 expression in HCC cells, along with significant effects on growth, migration, invasion, and apoptosis; the effects were reversed/blocked by the EP3 agonist sulprostone. Taken together, these data clearly demonstrated that acRoots inhibit HCC cell invasion and metastasis via inhibition of EP3 expression, resulting in decreased activation of VEGF, EGFR, MMP2, and MMP9.  相似文献   

16.
Ovarian cancer is one of the most common gynecologic malignancy with poor prognosis. Recently, long noncoding RNAs (lncRNAs) have been identified as key regulators in cancer development. The current study investigated the role of lncRNA P73 antisense RNA 1T (TP73‐AS1) in ovarian cancer. Quantitative real‐time polymerase chain reaction determined the expression levels of TP‐73AS1, matrix metallopeptidases (MMPs) messenger RNA. Cell proliferative ability, cell invasion, and migration were CCK‐8 and colony formation, and transwell invasion and migration assays, respectively. The protein levels of matrix metallopeptidase 2 (MMP2) and MMP9 were measured by Western blot. TP73‐AS1 was upregulated in the ovarian cancer tissues and ovarian cancer cells, and upregulation of TP73‐AS1 was associated with poor prognosis. Knockdown of TP73‐AS1 significantly suppressed cell proliferation, invasion, and migration of SKOV3 cells, and overexpression of TP73‐AS1 promoted cell proliferation, invasion, and migration of OVCA429 cells. In addition, knockdown of TP73‐AS1 suppressed the in vivo tumor growth. Tumor metastasis RT2 profiler polymerase chain reaction array showed that MMP2 and MMP9 was significantly upregulated by TP73‐AS1 overexpression in ovarian cancer cells. TP73‐AS1 overexpression enhanced the expression of MMP2 and MMP9 in ovarian cancer cells. Knockdown of MMP2 and MMP9 attenuated the effects of TP73‐AS1 overexpression on cell invasion and migration. The clinical data showed that MMP2 and MMP9 were upregulated and positively correlated with TP73‐AS1 expression in ovarian cancer tissues. Collectively, our results demonstrated the oncogenic role of TP73‐AS1 in ovarian cancer, and targeting TP73‐AS1 may represent a novel approach in battling against ovarian cancer.  相似文献   

17.
Golgi phosphoprotein 73 (GP73) has been regarded as a novel serum biomarker for the diagnosis of hepatocellular carcinoma (HCC) in recent years. It has been reported that the upregulation of GP73 may promote the carcinogenesis and metastasis of HCC; however, the mechanisms remain poorly understood. In this study, GP73 correlates positively with matrix metalloproteinase‐2 (MMP‐2) in HCC‐related cells and tissues. Further studies indicate that the knockdown of GP73 blocks MMP‐2 trafficking and secretion, resulting in cell invasion inhibition. Additionally, the knockdown of GP73 induces the accumulation of intracellular MMP‐2, which inhibits the phosphorylation of Src at Y416 and triggers the inhibition of SAPK/JNK and p53‐p21 signalling pathways through a negative feedback loop. Finally, the transactivation of MMP2 was inhibited by the reduction in E2F1. This study reveals that GP73 plays functional roles in the trafficking and equilibrium of epithelial‐mesenchymal transition (EMT)‐related secretory proteins and that GP73 serves as a new potential target for combating the metastasis of HCC.  相似文献   

18.

Background

Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional receptor involved in receptor-mediated endocytosis and cell signaling. The aim of this study was to elucidate the expression and mechanism of LRP1 in hepatocellular carcinoma (HCC).

Methods

LRP1 expression in 4 HCC cell lines and 40 HCC samples was detected. After interruption of LRP1 expression in a HCC cell line either with specific lentiviral-mediated shRNA LRP1 or in the presence of the LRP1-specific chaperone, receptor-associated protein (RAP), the role of LRP1 in the migration and invasion of HCC cells was assessed in vivo and in vitro, and the expression of matrix metalloproteinase (MMP) 9 in cells and the bioactivity of MMP9 in the supernatant were assayed. The expression and prognostic value of LRP1 were investigated in 327 HCC specimens.

Results

Low LRP1 expression was associated with poor HCC prognosis, with low expression independently related to shortened overall survival and increased tumor recurrence rate. Expression of LRP1 in non-recurrent HCC samples was significantly higher than that in early recurrent samples. LRP1 expression in HCC cell lines was inversely correlated with their metastatic potential. After inhibition of LRP1, low-metastatic SMCC-7721 cells showed enhanced migration and invasion and increased expression and bioactivity of MMP9. Correlation analysis showed a negative correlation between LRP1 and MMP9 expression in HCC patients. The prognostic value of LRP1 expression was validated in the independent data set.

Conclusions

LRP1 modulated the level of MMP9 and low level of LRP1 expression was associated with aggressiveness and invasiveness in HCCs. LRP1 offered a possible strategy for tumor molecular therapy.  相似文献   

19.
Vasculogenic mimicry (VM) constitutes a novel approach for tumour blood supply and contributes to tumour metastasis and poor prognosis in patients with melanoma. Myoferlin (MYOF), a type II membrane protein involved in membrane regeneration and repair, is elevated in several malignant tumours, especially in advanced melanomas. This study aims to investigate the role and mechanism of MYOF in the regulation of VM. VM structures were found in 14 of 52 tested melanoma samples, and high MYOF expression correlated with VM structures. According to Kaplan–Meier survival curves, VM channels and elevated MYOF expression both correlated with poor prognosis in melanoma patients. Down‐regulation of MYOF by siRNA severely impaired the capability of A375 cells to form VM structures in vitro. Further studies demonstrated MYOF knockdown inhibited cell migration and invasion, which is required for VM formation, via decreasing MMP‐2 expression as evidenced by Western blotting, RT‐RCP and ELISA results. SB‐3CT, a specific inhibitor of MMP‐2, showed similar inhibiting effects with siMYOF, further supporting that MYOF down‐regulation inhibits MMP‐2 expression to affect VM formation. Moreover, MYOF knockdown suppress VM formation by A375 cells by inducing mesenchymal‐to‐epithelial transition (MET). After down‐regulating MYOF, focal adhesions were enlarged and A375 cells developed into a clear epithelial morphology. Such cells acquired the expression of E‐cadherin at adherens junctions along with a loss of mesenchymal markers, such as Vimentin and Twist1. In conclusion, MYOF plays an important role in VM and knockdown of MYOF suppresses VM formation via decreasing MMP‐2 and inducing MET in A375 melanoma cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号