首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Antifreeze proteins (AFPs) can protect organisms from freezing injury by adsorbing to ice and inhibiting its growth. We describe here a method where ice, grown on a cold finger, is used to selectively adsorb and purify these ice-binding proteins from a crude mixture. Type III recombinant AFP was enriched approximately 50-fold after one round of partitioning into ice and purified to homogeneity by a second round. This method can also be used to purify non-ice-binding proteins by linkage to AFP domains as demonstrated by the recovery of a 50 kDa maltose-binding protein-AFP fusion from a crude lysate of Escherichia coli.  相似文献   

2.
We have characterized a cold-induced, boiling stable antifreeze protein. This highly active ice recrystallization inhibition protein shows a much lower thermal hysteresis effect and displays binding behavior that is uncharacteristic of any AFP from fish or insects. Ice-binding studies show it binds to the (1 0 1 0) plane of ice and FTIR studies reveal that it has an unusual type of highly beta-sheeted secondary structure. Ice-binding studies of both glycosylated and nonglycosylated expressed forms indicate that it adsorbs to ice through the protein backbone. These results are discussed in light of the currently proposed mechanisms of AFP action.  相似文献   

3.
We generated a recombinant 96-residue polypeptide corresponding to a sequence Tyr176-Gly273 of ice nucleation protein from Pseudomonas syringae (denoted INP96). INP96 exhibited an ability to shape an ice crystal, whose morphology is highly similar to the hexagonal-bipyramid generally identified for antifreeze protein. INP96 also showed a non-linear, concentration-dependent retardation of ice growth. Additionally, circular dichroism and NMR measurements suggested a local structural construction in INP96, which undergoes irreversible thermal denaturation. These data imply that a part of INP constructs a unique structure so as to interact with the ice crystal surfaces.  相似文献   

4.
Hexagonal shaped ice spicules in frozen antifreeze protein solutions   总被引:6,自引:0,他引:6  
Wilson PW  Gould M  DeVries AL 《Cryobiology》2002,44(3):240-250
In the presence of antifreeze proteins from both Antarctic and Arctic fishes, water freezes in the form of long c-axis spikes or spicular-like crystals. Transmission electron microscopy of the Pt/C replicas of the freeze fractured spicular ice in a small capillary revealed the presence of many hexagonally shaped structures whose cross-sectional dimensions were between 0.5 and 10 microm. Well-defined parallel faces were associated with most fractured and etched spicules. When fracture planes occurred near the tip of a spicule, well-defined pyramidal faces were apparent. Steps were sometimes associated with these pyramidal spicular crystal faces. On some of the replicas obvious roughening of certain crystal faces of the spicule was observed, suggesting that the antifreeze proteins may have adsorbed to those faces.  相似文献   

5.
Wowk B  Fahy GM 《Cryobiology》2002,44(1):14-23
The simple linear polymer polyglycerol (PGL) was found to apparently bind and inhibit the ice nucleating activity of proteins from the ice nucleating bacterium Pseudomonas syringae. PGL of molecular mass 750 Da was added to a solution consisting of 1 ppm freeze-dried P. syringae 31A in water. Differential ice nucleator spectra were determined by measuring the distribution of freezing temperatures in a population of 98 drops of 1 microL volume. The mean freezing temperature was lowered from -6.8 degrees C (control) to -8.0,-9.4,-12.5, and -13.4 degrees C for 0.001, 0.01, 0.1, and 1% w/w PGL concentrations, respectively (SE < 0.2 degrees C). PGL was found to be an ineffective inhibitor of seven defined organic ice nucleating agents, whereas the general ice nucleation inhibitor polyvinyl alcohol (PVA) was found to be effective against five of the seven. The activity of PGL therefore seems to be specific against bacterial ice nucleating protein. PGL alone was an ineffective inhibitor of ice nucleation in small volumes of environmental or laboratory water samples, suggesting that the numerical majority of ice nucleating contaminants in nature may be of nonbacterial origin. However, PGL was more effective than PVA at suppressing initial ice nucleation events in large volumes, suggesting a ubiquitous sparse background of bacterial ice nucleating proteins with high nucleation efficiency. The combination of PGL and PVA was particularly effective for reducing ice formation in solutions used for cryopreservation by vitrification.  相似文献   

6.
Ice recrystallization, the growth of large ice crystals at the expense of small ones, stresses freeze tolerant organisms and causes spoilage of frozen foods. This process is inhibited by antifreeze proteins (AFPs). Here, we present a simple method for determining the ice recrystallization inhibition (RI) activity of an AFP under physiological conditions using 10microl glass capillaries. Serial dilutions were prepared to determine the concentration below which RI activity was no longer detected, termed the RI endpoint. For type III AFP this was 200nM. The capillary method allows samples to be aligned and viewed simultaneously, which facilitates RI endpoint determination. Once prepared, the samples can be used reproducibly in subsequent RI assays and can be archived in a freezer for future reference. This method was used to detect the elution of type III AFP from a Sephadex G-75 size-exclusion column. RI activity was found at the expected V(e) for a 7kDa protein and also unexpectedly in the void volume.  相似文献   

7.
Antifreeze proteins (AFPs), characterized by their ability to separate the melting and growth temperatures of ice and to inhibit ice recrystallization, play an important role in cold adaptation of several polar and cold-tolerant organisms. Recently, a multigene family of AFP genes was found in the diatom Fragilariopsis cylindrus, a dominant species within polar sea ice assemblages. This study presents the AFP from F. cylindrus set in a molecular and crystallographic frame. Differential protein expression after exposure of the diatoms to environmentally relevant conditions underlined the importance of certain AFP isoforms in response to cold. Analyses of the recombinant AFP showed freezing point depression comparable to the activity of other moderate AFPs and further enhanced by salt (up to 0.9 °C in low salinity buffer, 2.5 °C at high salinity). However, unlike other moderate AFPs, its fastest growth direction is perpendicular to the c-axis. The protein also caused strong inhibition of recrystallization at concentrations of 1.2 and 0.12 μM at low and high salinity, respectively. Observations of crystal habit modifications and pitting activity suggested binding of AFPs to multiple faces of the ice crystals. Further analyses showed striations caused by AFPs, interpreted as inclusion in the ice. We suggest that the influence on ice microstructure is the main characteristic of these AFPs in sea ice.  相似文献   

8.
9.
The purpose of the present study was to evaluate whether AFPs protect the heart from freezing and improve survival and viability in subzero cryopreservation. Hearts were subject to 5 preservation protocols; University of Wisconsin solution (UW) at 4 degrees C, UW at -1.3 degrees C without nucleation, UW at -1.3 degrees C with nucleation, UW AFP I (15 mg/cm(3)) at -1.3 degrees C with nucleation, and in UW AFP III (15 mg/cm(3)) at -1.3 degrees C with nucleation. Hearts were preserved for 24, 28, and 32 h, rewarmed and connected to the working isolated perfusion system. Data [heart rate (HR), coronary flow (CF), and developed pressure (dP)] was collected 30 and 60 min after reperfusion. Hearts preserved at -1.3 degrees C without AFPs froze, while hearts preserved with AFP did not freeze when nucleation was initiated and survived. Survival and dP of hearts preserved for 24h at -1.3 degrees C using AFP III was better than those preserved at 4 degrees C, (dP; 1.4 vs. 0.8, p<0.05). Four of six hearts and six of six hearts died when preserved at 4 degrees C for 28 and 32 h, respectively, all of the hearts that were preserved at -1.3 degrees C with or without AFPs survived after 28 h (n=18) and 32 h (n=18). CF was higher in UW -1.3 degrees C group without attempted nucleation than in AFP I and AFP III groups after 28 and 32 h (3.4 vs. 1.7, p<0.05, and 3.4 vs. 1.7, p<0.05, respectively). In conclusion, AFPs were found to protect the heart from freezing and improve survival and dP (AFP III) in prolonged subzero preservation.  相似文献   

10.
Antifreeze proteins are a structurally diverse group of proteins characterized by their unique ability to cause a separation of the melting- and growth-temperatures of ice. These proteins have evolved independently in different kinds of cold-adapted ectothermic animals, including insects and fish, where they protect against lethal freezing of the body fluids. There is a great variability in the capacity of different kinds of antifreeze proteins to evoke the antifreeze effect, but the basis of these differences is not well understood. This study reports on salt-induced enhancement of the antifreeze activity of an antifreeze protein from the longhorn beetle Rhagium inquisitor (L.). The results imply that antifreeze activity is predetermined by a steady-state distribution of the antifreeze protein between the solution and the ice surface region. The observed salt-induced enhancement of the antifreeze activity compares qualitatively and quantitatively with salt-induced lowering of protein solubility. Thus, salts apparently enhance antifreeze activity by evoking a solubility-induced shift in the distribution pattern of the antifreeze proteins in favour of the ice. These results indicate that the solubility of antifreeze proteins in the solution surrounding the ice crystal is a fundamental physiochemical property in relation to their antifreeze potency.  相似文献   

11.
The freezing-melting hysteresis in a given volume of hemolymph from the cerambycid beetle Rhagium inquisitor was linearly and negatively related to the logarithm of the mass fraction of ice in the sample. When the ice fraction dropped by a factor of 10, the hysteresis activity increased by about 2 degrees C. When the hemolymph was diluted, the hysteresis activity was linearly and negatively related to the logarithm of the dilution factor. Dilution of the hemolymph by a factor of 2 led to a 1 degree C reduction in hysteresis activity. In the diluted samples, the ice growth took place along the a-axes, implying that the antifreeze peptides of insects block ice growth along the c-axis, in addition to the a-axis.  相似文献   

12.
13.
Wowk B 《Cryobiology》2005,50(3):81-331
Low molecular weight copolymers of polyvinyl alcohol (PVA) are known to be potent inhibitors of ice formation in solutions used for cryopreservation by vitrification, even at concentrations as low as one part per million. Concentrated aqueous solutions of these polymers tend to become turbid after preparation. Condensed particles causing turbidity were isolated from a commercially available PVA-based ice blocker (X-1000) and found to consist of a polymer subfraction that is especially effective at ice blocking. Fifty seven percentage (w/w) of ethylene glycol (EG) in distilled water and 0.025% of the condensate polymer showed similar stability against devitrification as 57% EG+0.1% ordinary X-1000. At higher concentrations, 56.9% EG+0.1% condensate polymer was as effective as 56% EG+1% ordinary X-1000. All solutions containing ice blocker showed much less devitrification during warming than a 57% EG control solution. The condensate polymer was found to be strongly self-associating and less water soluble than ordinary X-1000. The mean molecular weight of the condensate polymer was approximately 1400 compared to 2100 for ordinary X-1000. Proton NMR revealed no large chemical differences. Subtle differences in composition or stereochemistry, perhaps in local regions of molecules, must be responsible for the dramatic differences in physical behavior and ice blocking effectiveness of the condensate polymer.  相似文献   

14.
The bacterial ice nucleation gene inaZ confers production of ice nuclei when transferred into transgenic plants. Conditioning of the transformed plant tissue at temperatures near 0°C greatly increased the ice nucleation activity in plants, and maximum ice nucleation activity was achieved only after low-temperature conditioning for about 48 h. Although the transgenic plants contain similar amounts of inaZ mRNA at both normal and low temperatures, low temperatures are required for accumulation of INAZ protein. We propose that the stability of the INAZ protein and thus ice nucleation activity in the transgenic plants is enhanced by low-temperature conditioning.  相似文献   

15.
The expression level of an ice nucleation gene (inaZ) was varied in Escherichia coli to observe the relationship between activity and gene product. The ice nucleation activity increased as the 2nd to 3rd power of the membrane concentration of the inaZ gene product, implying that molecules of InaZ protein interact cooperatively in groups of two to three at the rate-limiting step of ice nucleus assembly. The 2nd to 3rd power relationship was independent of the threshold temperature at which ice nucleation was measured and was consistent over a 500-fold range of protein concentration. Such a relationship indicates that the same rate-limiting step must be common to the formation of ice nuclei displaying all the various threshold temperatures within a bacterial population. Observations of Pseudomonas syringae, expressing the inaZ gene at various levels, were consistent with a similar relationship and hence a similar mechanism of ice nucleus assembly in Pseudomonas.  相似文献   

16.
A re-evaluation of the role of type IV antifreeze protein   总被引:1,自引:0,他引:1  
A lipoprotein-like antifreeze protein (type IV AFP) has previously been isolated only from the blood plasma of the longhorn sculpin. However, the plasma antifreeze activity in all individuals of this species tested from Newfoundland and New Brunswick waters ranges from low to undetectable. A close relative of the longhorn sculpin, the shorthorn sculpin, does have appreciable antifreeze activity in its blood but this is virtually all accounted for by the α-helical, alanine-rich type I AFP, other isoforms of which are also present in the skin of both fishes. We have characterized a putative ortholog of type IV AFP in shorthorn sculpin by cDNA cloning. This 12.2-kDa Gln-rich protein is 87% identical to the longhorn sculpin’s type IV AFP. Recombinant versions of both orthologs were produced in bacteria and shown to have antifreeze activity. Immunoblotting with antibodies raised to type IV AFP shows this protein present in longhorn sculpin plasma at levels of less than 100 μg/mL, which are far too low to protect the blood from freezing at the temperature of icy seawater. This confirms the results of direct antifreeze assays on the plasmas. It appears that type IV AFP has the potential to develop as a functional antifreeze in these fishes but may not have been selected for this role because of the presence of type I AFP. Consistent with this hypothesis is the observation that the type IV AFP gene has not been amplified the way functional antifreeze protein genes have in all other species examined.  相似文献   

17.
Abstract An approximately 7 kbp genomic DNA fragment was cloned from an ice nucleation-active (ina) strain of Erwinia ananas and defined as to its restriction enzyme site. When the DNA fragment was introduced into E. coli MM294, a potent ice nucleation activity was expressed. Both 0.7 kbp truncation from the 5'-end and 1.7 kbp truncation from the 3'-end were also effective in expressing the ice nucleation activity in E. coli . Therefore, the resulting DNA fragment of approximately 5 kbp was considered to be an ina gene and named ina A. It existed as a unique gene in this strain of E. ananas . No corresponding ina gene existed in an ice nucleation-inactive strain of E. milletiae .  相似文献   

18.
Antifreeze proteins (AFPs) lower the freezing point of water by a non-colligative mechanism, but do not lower the melting point, therefore producing a difference between the freezing and melting points termed thermal hysteresis. Thermal hysteresis activity (THA) of AFPs from overwintering larvae of the beetle Dendroides canadensis is dependent upon AFP concentration and the presence of enhancers of THA which may be either other proteins or low molecular mass enhancers. The purpose of this study was to determine the relative contributions of endogenous enhancers in winter D. canadensis hemolymph.Winter hemolymph collected over four successive winters (1997-1998 to 2000-2001) was tested. The first three of these winters were the warmest on record in this area, while December of the final year was the coldest on record. Protein and low molecular mass enhancers raised hemolymph THA 60-97% and 35-55%, respectively, based on hemolymph with peak THA for each year collected over the four successive winters. However, the hemolymph AFPs were not maximally enhanced since addition of the potent enhancer citrate (at non-physiologically high levels) resulted in large increases in THA. 13NMR showed that glycerol was the only low molecular mass solute present in sufficiently high concentrations in the hemolymph to function as an enhancer. Maximum THA appears to be ∼8.5 °C.  相似文献   

19.
Antifreeze proteins (AFPs) enable organisms to survive under freezing or sub-freezing conditions. AFPs have a great potential in the low temperature storage of cells, tissues, organs, and foods. This process will require a large number of recombinant AFPs. In the present study, the recombinant carrot AFP was highly expressed in Escherichia coli strain BL21 (DE3). The activity of the purified and refolded recombinant proteins was analyzed by measurement of thermal hysteresis (TH) activity and detection of in vitro antifreeze activity by measuring enhanced cold resistance of bacteria. Two carrot AFP mutants generated by site-directed mutagenesis were also expressed and purified under these conditions for use in parallel experiments. Recombinant DcAFP displayed a TH activity equivalent to that of native DcAFP, while mutants DcAFP-N130Q and rDcAFP-N130V showed 32 and 43% decreases in TH activity, respectively. Both the recombinant DcAFP and its mutants were able to enhance the cold resistance of bacteria, to degrees consistent with their respective TH activities.  相似文献   

20.
《FEBS letters》2014,588(9):1767-1772
The ice binding motifs of insect antifreeze proteins (AFPs) mainly consist of repetitive TxT motifs aligned on a flat face of the protein. However, these motifs often contain non-threonines that disrupt the TxT pattern. We substituted two such disruptive amino acids located in the ice binding face of an AFP from Rhagium mordax with threonine. Furthermore, a mutant with an extra ice facing TxT motif was constructed. These mutants showed enhanced antifreeze activity compared to the wild type at low concentrations. However, extrapolating the data indicates that the wild type will become the most active at concentrations above 270 μmol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号