共查询到20条相似文献,搜索用时 15 毫秒
1.
David A. Mannock Ruthven N.A.H. Lewis Todd P.W. McMullen Ronald N. McElhaney 《Chemistry and physics of lipids》2010,163(6):403-448
This review deals with the effect of variations in phospholipid and sterol structure on the nature and magnitude of lipid-sterol interactions in lipid bilayer model membranes. The first portion of the review covers the effect of Chol itself on the thermotropic phase behavior and organization of a variety of different glycero- and sphingolipid membrane lipid classes, varying in the structure and charge of their polar headgroups and in the length and structure of their fatty acyl chains. The second part of this review deals with the effect of variations in sterol structure on the thermotropic phase behavior and organization primarily of the well studied DPPC model membrane system. In the third section, we focus on some of the contributions of sterol functional group chemistry, molecular conformation and dynamics, to sterol-lipid interactions. Using those studies, we re-examine the results of recently published experimental and computer-modeling studies to provide a new more dynamic molecular interpretation of sterol-lipid interactions. We suggest that the established view of the rigid sterol ring system and extended alkyl side-chain obtained from physical studies of cholesterol-phospholipid mixtures may not apply in lipid mixtures differing in their sterol chemical structure. 相似文献
2.
Ivana Pajic-Lijakovic Milan Milivojevic 《Biomechanics and modeling in mechanobiology》2014,13(5):1097-1104
Studies of thermal fluctuations in discocytes, echinocytes, and spherocytes suggest that the coupling between lipid bilayer and cytoskeleton can affect viscoelastic behavior of single erythrocyte membranes. To test this hypothesis, we developed a 3D constitutive model describing viscoelastic behavior of erythrocyte membranes, at long relaxation times \(t \in [0.20\,\mathrm {s}, 1.05\,\mathrm {s}]\) and short relaxation times \(t \in [0.03\,\mathrm {s}, 0.20\,\mathrm {s}]\) . The model was constructed using combination of spring and spring pot rheological elements arranged in parallel. The rearrangement of cytoskeleton induced by changing the bending state of lipid bilayer was described by a modified Eyring model. The model predictions point to an anomalous nature of energy dissipation and an ordered harmonic nature of the coupling mechanism described by a series of fractional derivatives of the order n \(\alpha \) (where \( n \in [- 1, 2]\) ). As a result, the stress generated within the lipid bilayer is related to the rate of change of the irreversible stress within the cytoskeleton. 相似文献
3.
《BBA》1985,810(1):73-83
Studies on monomolecular layers of phospholipids containing the antenna protein B800–850 (LHCP) and in some cases additionally the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides are reported. Information on monolayer preparation as well as on protein/lipid and protein/protein interaction is obtained by means of fluorescence spectroscopy and microscopy at the air/water interface in combination with film balance experiments. It is shown that a homogeneous distribution of functional proteins can be achieved. This can be transformed into a regular pattern-like distribution by inducing a phospholipid phase transition. Although the LHCP preferentially partitions into the fluid lipid phase, it decreases the lateral pressure necessary to crystallize the lipid. This is probably due to an increase in order of the fluid phase. A pressure-induced conformation change of the LHCP is detected via a drastic change in fluorescence yield. A highly efficient energy transfer from LHCP to the reaction center is observed. This proves the quantitative reconstitution of both types of proteins and indicates protein aggregation also in the monolayer. 相似文献
4.
《生物化学与生物物理学报:生物膜》2015,1848(9):1849-1859
We review the importance of helix motions for the function of several important categories of membrane proteins and for the properties of several model molecular systems. For voltage-gated potassium or sodium channels, sliding, tilting and/or rotational movements of the S4 helix accompanied by a swapping of cognate side-chain ion-pair interactions regulate the channel gating. In the seven-helix G protein-coupled receptors, exemplified by the rhodopsins, collective helix motions serve to activate the functional signaling. Peptides which initially associate with lipid-bilayer membrane surfaces may undergo dynamic transitions from surface-bound to tilted-transmembrane orientations, sometimes accompanied by changes in the molecularity, formation of a pore or, more generally, the activation of biological function. For single-span membrane proteins, such as the tyrosine kinases, an interplay between juxtamembrane and transmembrane domains is likely to be crucial for the regulation of dimer assembly that in turn is associated with the functional responses to external signals. Additionally, we note that experiments with designed single-span transmembrane helices offer fundamental insights into the molecular features that govern protein–lipid interactions.This article is part of a Special Issue entitled: Lipid–protein interactions. 相似文献
5.
The analysis of protein–protein interactions is important for developing a better understanding of the functional annotations of proteins that are involved in various biochemical reactions in vivo. The discovery that a protein with an unknown function binds to a protein with a known function could provide a significant clue to the cellular pathway concerning the unknown protein. Therefore, information on protein–protein interactions obtained by the comprehensive analysis of all gene products is available for the construction of interactive networks consisting of individual protein–protein interactions, which, in turn, permit elaborate biological phenomena to be understood. Systems for detecting protein–protein interactions in vitro and in vivo have been developed, and have been modified to compensate for limitations. Using these novel approaches, comprehensive and reliable information on protein–protein interactions can be determined. Systems that permit this to be achieved are described in this review.K. Kuroda, M. Kato and J. Mima contributed equally to this work. 相似文献
6.
Charged amino acids are known to be important in controlling the actions of integral and peripheral membrane proteins and cell disrupting peptides. Atomistic molecular dynamics studies have shed much light on the mechanisms of membrane binding and translocation of charged protein groups, yet the impact of the full diversity of membrane physico-chemical properties and topologies has yet to be explored. Here we have performed a systematic study of an arginine (Arg) side chain analog moving across saturated phosphatidylcholine (PC) bilayers of variable hydrocarbon tail length from 10 to 18 carbons. For all bilayers we observe similar ion-induced defects, where Arg draws water molecules and lipid head groups into the bilayers to avoid large dehydration energy costs. The free energy profiles all exhibit sharp climbs with increasing penetration into the hydrocarbon core, with predictable shifts between bilayers of different thickness, leading to barrier reduction from 26 kcal/mol for 18 carbons to 6 kcal/mol for 10 carbons. For lipids of 10 and 12 carbons we observe narrow transmembrane pores and corresponding plateaus in the free energy profiles. Allowing for movements of the protein and side chain snorkeling, we argue that the energetic cost for burying Arg inside a thin bilayer will be small, consistent with recent experiments, also leading to a dramatic reduction in pKa shifts for Arg. We provide evidence that Arg translocation occurs via an ion-induced defect mechanism, except in thick bilayers (of at least 18 carbons) where solubility-diffusion becomes energetically favored. Our findings shed light on the mechanisms of ion movement through membranes of varying composition, with implications for a range of charged protein–lipid interactions and the actions of cell-perturbing peptides. This article is part of a Special Issue entitled: Membrane protein structure and function. 相似文献
7.
Structure determination of membrane proteins has highlighted the many roles played by lipids in influencing overall protein architecture. It is now widely accepted that lipids surrounding membrane proteins play crucial roles by modulating their conformational, structural, and functional properties. Capturing often transient lipid interactions and defining their chemical identity, however, remains challenging. Recent advances in mass spectrometry have resolved questions concerning lipid interactions by providing the molecular composition of intact complexes in association with lipids. Together with other biophysical tools, a picture is emerging of the dynamic nature of lipid-mediated interactions and their effects on conformation, interactions, and signaling. 相似文献
8.
《Critical reviews in biochemistry and molecular biology》2013,48(2):98-122
AbstractPolyketide synthases (PKSs) are responsible for synthesizing a myriad of natural products with agricultural, medicinal relevance. The PKSs consist of multiple functional domains of which each can catalyze a specified chemical reaction leading to the synthesis of polyketides. Biochemical studies showed that protein–substrate and protein–protein interactions play crucial roles in these complex regio-/stereo-selective biochemical processes. Recent developments on X-ray crystallography and protein NMR techniques have allowed us to understand the biosynthetic mechanism of these enzymes from their structures. These structural studies have facilitated the elucidation of the sequence–function relationship of PKSs and will ultimately contribute to the prediction of product structure. This review will focus on the current knowledge of type I PKS structures and the protein–protein interactions in this system. 相似文献
9.
Molecular Biology - Huntingtin (HTT) occurs in the neuronal cytoplasm and can interact with structural elements of synapses. Huntington’s disease (HD) results from pathological expansion of a... 相似文献
10.
《生物化学与生物物理学报:生物膜》2015,1848(9):1757-1764
Cell membranes are composed of a lipid bilayer containing proteins that cross and/or interact with lipids on either side of the two leaflets. The basic structure of cell membranes is this bilayer, composed of two opposing lipid monolayers with fascinating properties designed to perform all the functions the cell requires. To coordinate these functions, lipid composition of cellular membranes is tailored to suit their specialized tasks. In this review, we describe the general mechanisms of membrane–protein interactions and relate them to some of the molecular strategies organisms use to adjust the membrane lipid composition in response to a decrease in environmental temperature. While the activities of all biomolecules are altered as a function of temperature, the thermosensors we focus on here are molecules whose temperature sensitivity appears to be linked to changes in the biophysical properties of membrane lipids. This article is part of a Special Issue entitled: Lipid–protein interactions. 相似文献
11.
12.
Anna-Maria Möller Simon Brückner Lea-Janina Tilg Blanka Kutscher Marc M. Nowaczyk Franz Narberhaus 《Molecular microbiology》2023,119(1):29-43
The outer membrane (OM) of Gram-negative bacteria functions as an essential barrier and is characterized by an asymmetric bilayer with lipopolysaccharide (LPS) in the outer leaflet. The enzyme LpxC catalyzes the first committed step in LPS biosynthesis. It plays a critical role in maintaining the balance between LPS and phospholipids (PL), which are both derived from the same biosynthetic precursor. The essential inner membrane proteins YejM (PbgA, LapC), LapB (YciM), and the protease FtsH are known to account for optimal LpxC levels, but the mechanistic details are poorly understood. LapB is thought to be a bi-functional protein serving as an adaptor for FtsH-mediated turnover of LpxC and acting as a scaffold in the coordination of LPS biosynthesis. Here, we provide experimental evidence for the physical interaction of LapB with proteins at the biosynthetic node from where the LPS and PL biosynthesis pathways diverge. By a total of four in vivo and in vitro assays, we demonstrate protein–protein interactions between LapB and the LPS biosynthesis enzymes LpxA, LpxC, and LpxD, between LapB and YejM, the anti-adaptor protein regulating LapB activity, and between LapB and FabZ, the first PL biosynthesis enzyme. Moreover, we uncovered a new adaptor function of LapB in destabilizing not only LpxC but also LpxD. Overall, our study shows that LapB is a multi-functional protein that serves as a protein–protein interaction hub for key enzymes in LPS and PL biogenesis presumably by virtue of multiple tetratricopeptide repeat (TPR) motifs in its cytoplasmic C-terminal region. 相似文献
13.
The ATP-binding cassette (ABC) transporters are a large family of proteins responsible for the translocation of a variety
of compounds across the membranes of both prokaryotes and eukaryotes. The inter-protein and intra-protein interactions in
these traffic ATPases are still only poorly understood. In the present study we describe, for the first time, an extensive
yeast two-hybrid (Y2H)-based analysis of the interactions of the cytoplasmic loops of the yeast pleiotropic drug resistance
(Pdr) protein, Pdr5p, an ABC transporter of Saccharomyces
cerevisiae. Four of the major cytosolic loops that have been predicted for this protein [including the two nucleotide-binding domain
(NBD)-containing loops and the cytosolic C-terminal region] were subjected to an extensive inter-domain interaction study
in addition to being used as baits to identify potential interacting proteins within the cell using the Y2H system. Results
of these studies have revealed that the first cytosolic loop (CL1) – containing the first NBD domain – and also the C-terminal
region of Pdr5p interact with several candidate proteins. The possibility of an interaction between the CL1 loops of two neighboring
Pdr5p molecules was also indicated, which could possibly have implications for dimerization of this protein.
Electronic Publication 相似文献
14.
Understanding the molecular mechanisms of endogenous and environmental metabolites is crucial for basic biology and drug discovery. With the genome, proteome, and metabolome of many organisms being readily available, researchers now have the opportunity to dissect how key metabolites regulate complex cellular pathways in vivo. Nonetheless, characterizing the specific and functional protein targets of key metabolites associated with specific cellular phenotypes remains a major challenge. Innovations in chemical biology are now poised to address this fundamental limitation in physiology and disease. In this review, we highlight recent advances in chemoproteomics for targeted and proteome-wide analysis of metabolite–protein interactions that have enabled the discovery of unpredicted metabolite–protein interactions and facilitated the development of new small molecule therapeutics. 相似文献
15.
《生物化学与生物物理学报:生物膜》2015,1848(9):1729-1743
The molecular activity of Na,K-ATPase and other P2 ATPases like Ca2 +-ATPase is influenced by the lipid environment via both general (physical) and specific (chemical) interactions. Whereas the general effects of bilayer structure on membrane protein function are fairly well described and understood, the importance of the specific interactions has only been realized within the last decade due particularly to the growing field of membrane protein crystallization, which has shed new light on the molecular details of specific lipid–protein interactions. It is a remarkable observation that specific lipid–protein interactions seem to be evolutionarily conserved, and conformations of specifically bound lipids at the lipid–protein surface within the membrane are similar in crystal structures determined with different techniques and sources of the protein, despite the rather weak lipid–protein interaction energy. Studies of purified detergent-soluble recombinant αβ or αβFXYD Na,K-ATPase complexes reveal three separate functional effects of phospholipids and cholesterol with characteristic structural selectivity. The observations suggest that these three effects are exerted at separate binding sites for phophatidylserine/cholesterol (stabilizing), polyunsaturated phosphatidylethanolamine (stimulatory), and saturated PC or sphingomyelin/cholesterol (inhibitory), which may be located within three lipid-binding pockets identified in recent crystal structures of Na,K-ATPase. The findings point to a central role of direct and specific interactions of different phospholipids and cholesterol in determining both stability and molecular activity of Na,K-ATPase and possible implications for physiological regulation by membrane lipid composition. This article is part of a special issue titled “Lipid–Protein Interactions.” 相似文献
16.
17.
Elvina Clarie Dullah 《Critical reviews in biotechnology》2017,37(2):251-261
Endotoxin is a type of pyrogen that can be found in Gram-negative bacteria. Endotoxin can form a stable interaction with other biomolecules thus making its removal difficult especially during the production of biopharmaceutical drugs. The prevention of endotoxins from contaminating biopharmaceutical products is paramount as endotoxin contamination, even in small quantities, can result in fever, inflammation, sepsis, tissue damage and even lead to death. Highly sensitive and accurate detection of endotoxins are keys in the development of biopharmaceutical products derived from Gram-negative bacteria. It will facilitate the study of the intermolecular interaction of an endotoxin with other biomolecules, hence the selection of appropriate endotoxin removal strategies. Currently, most researchers rely on the conventional LAL-based endotoxin detection method. However, new methods have been and are being developed to overcome the problems associated with the LAL-based method. This review paper highlights the current research trends in endotoxin detection from conventional methods to newly developed biosensors. Additionally, it also provides an overview of the use of electron microscopy, dynamic light scattering (DLS), fluorescence resonance energy transfer (FRET) and docking programs in the endotoxin–protein analysis. 相似文献
18.
Daniel Huster 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2014,1841(8):1146-1160
The appropriate lipid environment is crucial for the proper function of membrane proteins. There is a tremendous variety of lipid molecules in the membrane and so far it is often unclear which component of the lipid matrix is essential for the function of a respective protein. Lipid molecules and proteins mutually influence each other; parameters such as acyl chain order, membrane thickness, membrane elasticity, permeability, lipid-domain and annulus formation are strongly modulated by proteins. More recent data also indicates that the influence of proteins goes beyond a single annulus of next-neighbor boundary lipids. Therefore, a mesoscopic approach to membrane lipid–protein interactions in terms of elastic membrane deformations has been developed. Solid-state NMR has greatly contributed to the understanding of lipid–protein interactions and the modern view of biological membranes. Methods that detect the influence of proteins on the membrane as well as direct lipid–protein interactions have been developed and are reviewed here. Examples for solid-state NMR studies on the interaction of Ras proteins, the antimicrobial peptide protegrin-1, the G protein-coupled receptor rhodopsin, and the K+ channel KcsA are discussed. This article is part of a Special Issue entitled Tools to study lipid functions. 相似文献
19.
《Trends in biochemical sciences》2021,46(10):861-862