首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The role of early secretory trafficking in the regulation of cell motility remains incompletely understood. Here we used a small interfering RNA screen to monitor the effects on structure of the Golgi apparatus and cell migration. Two major Golgi phenotypes were observed—fragmented and small Golgi. The latter exhibited a stronger correlation with a defect in cell migration. Among the small Golgi hits, we focused on phospholipase C γ1 (PLCγ1). We show that PLCγ1 regulates Golgi structure and cell migration independently of its catalytic activity but in a manner that depends on interaction with the tethering protein p115. PLCγ1 regulates the dynamics of p115 in the early secretory pathway, thereby controlling trafficking from the endoplasmic reticulum to the Golgi. Our results uncover a new function of PLCγ1 that is independent of its catalytic function and link early secretory trafficking to the regulation of cell migration.  相似文献   

4.
Estradiol (E2) regulates several cellular functions through the interaction with estrogen receptor subtypes, ERα and ERβ, which present different functional and regulation properties. ER subtypes have been identified in human astrocytomas, the most common and aggressive primary brain tumors. We studied the role of ER subtypes in cell growth of two human astrocytoma cell lines derived from tumors of different evolution grades: U373 and D54 (grades III and IV, respectively). E2 significantly increased the number of cells in both lines and the co-administration with an ER antagonist (ICI 182, 780) significantly blocked E2 effects. ERα was the predominant subtype in both cell lines. E2 and ICI 182, 780 down-regulated ERα expression. The number of U373 and D54 cells significantly increased after PPT (ERα agonist) treatment but not after DPN (ERβ agonist) one. To determine the role of SRC-1 and SRC-3 coactivators in ERα induced cell growth, we silenced them with RNA interference. Coactivator silencing blocked the increase in cell number induced by PPT. The content of proteins involved in proliferation and metastasis was also determined after PPT treatment. Western blot analysis showed that in U373 cells the content of PR isoforms (PR-A and PR-B), EGFR, VEGF and cyclin D1 increased after PPT treatment while in D54 cells only the content of EGFR was increased. Our results demonstrate that E2 induces cell growth of human astrocytoma cell lines through ERα and its interaction with SRC-1 and SRC-3 and also suggest differential roles of ERα on cell growth depending on astrocytoma grade.  相似文献   

5.
6.
Dickkopf1 (DKK1), a secreted protein involved in embryonic development, is a potent inhibitor of the Wnt signaling pathway and has been postulated to be a tumor suppressor or tumor promoter depending on the tumor type. In this study, we showed that DKK1 was expressed differently among non-small-cell lung cancer cell lines. The DKK1 expression level was much higher in A549 cells than in H460 cells. We revealed that blockage of DKK1 expression by silencing RNA in A549 cells caused up-regulation of intracellular reactive oxygen species (ROS) modulator (ROMO1) protein, followed by partial cell death, cell growth inhibition, and loss of epithelial–mesenchymal transition property caused by ROS, and it also increased γ-radiation sensitivity. DKK1 overexpression in H460 significantly inhibited cell survival with the decrease of ROMO1 level, which induced the decrease of cellular ROS. Thereafter, exogenous N-acetylcysteine, an antioxidant, or hydrogen peroxide, a pro-oxidant, partially rescued cells from death and growth inhibition. In each cell line, both overexpression and blockage of DKK1 not only elevated p-RB activation, which led to cell growth arrest, but also inactivated AKT/NF-kB, which increased radiation sensitivity and inhibited cell growth. This study is the first to demonstrate that strict modulation of DKK1 expression in different cell types partially maintains cell survival via tight regulation of the ROS-producing ROMO1 and radiation resistance.  相似文献   

7.
Pancreatic cancer is highly invasive and is currently the fourth leading cause of cancer death worldwide. CXC chemokine receptor-4 (CXCR4) is a G protein-coupled receptor for CXC chemokine ligand 12/stromal cell-derived factor-1α (SDF-1α), a member of a large family of small, structurally related, heparin-binding chemokine proteins. SDF-1α/CXCR4 plays an important role in tumor growth, invasion, metastasis, and angiogenesis. SDF-1α and CXCR4 are upregulated in many tumors, including pancreatic cancer tissues, and preliminary data indicate that the SDF-1/CXCR4 axis plays an important role in tumor invasion. However, their precise role and the mechanism through which they function remain largely unknown. In this study, analysis of SDF-1α, CXCR4 and MMP-2 expression in pancreatic cancer and adjacent tissue samples from ten patients revealed that all three proteins are overexpressed in human pancreatic cancer. SDF-1α induced MMP-2 and MMP-9 upregulation in PANC-1 and SW-1990 cells, which was associated with increased pancreatic cancer cell proliferation and invasion. Furthermore, SDF-1α induced p38 phosphorylation and p38 inhibition reduced both the level of SDF-1α-stimulated MMP-2 expression and PANC-1 cell invasion. Overall, our results demonstrate that SDF-1α/CXCR4 upregulates MMP-2 expression and induces pancreatic cancer cell invasion in PANC-1 and SW-1990 cell lines by activating p38 MAPK.  相似文献   

8.
9.
10.
Hypoxia and islet inflammation are involved in β-cell failure in type 2 diabetes (T2D). Elevated plasma LPS levels have been verified in patients with T2D, and hypoxia occurs in islets of diabetic mice. Activation of inflammasomes in ischemic or hypoxic conditions was identified in various tissues. Here, we investigated whether hypoxia activates the inflammasome in β cells and the possible mechanisms involved. In mouse insulinoma cell line 6 (MIN6), hypoxia (1% O2) primes the NLRP3 inflammasome along with NF-κB signaling activation. Our results demonstrate that hypoxia can activate the NLRP3 inflammasome in LPS-primed MIN6 to result in initiating the β cell inflammatory response and cell death in vitro. Reactive oxygen species (ROS) and the thioredoxin-interacting protein (TXNIP) are up-regulated in response to hypoxia. Finally, the role of the ROS-TXNIP axis in mediating the activation of the NLRP3 inflammasome and cell death was characterized by pretreating with the ROS scavenger N-acetylcysteine (NAC) and performing TXNIP knockdown experiments in MIN6. Our data indicate for the first time that the inflammasome is involved in the inflammatory response and cell death in hypoxia-induced β cells through the ROS-TXNIP-NLRP3 axis in vitro. This provides new insight into the relationship between hypoxia and inflammation in T2D.  相似文献   

11.
Kang YH  Ji NY  Han SR  Lee CI  Kim JW  Yeom YI  Kim YH  Chun HK  Kim JW  Chung JW  Ahn DK  Lee HG  Song EY 《Cellular signalling》2012,24(10):1940-1949
In our previous study, we reported that endothelial cell specific molecule-1 (ESM-1) was increased in tissue and serum from colorectal cancer patients and suggested that ESM-1 can be used as a potential serum marker for early detection of colorectal cancer. The aim of this study was to evaluate the role of ESM-1 as an intracellular molecule in colorectal cancer. ESM-1 expression was knocked down by small interfering RNA (siRNA) in colorectal cancer cells. Expression of ESM-1 siRNA decreased cell survival through the Akt-dependent inhibition of NF-κB/IκB pathway and an interconnected reduction in phospho-Akt, -p38, -ERK1, -RSK1, -GSK-3α/β and -HSP27, as determined by a phospho-MAPK array. ESM-1 silencing induced G(1) phase cell cycle arrest by induction of PTEN, resulting in the inhibition of cyclin D1 and inhibited cell migration and invasion of COLO205 cells. Consistently, ESM-1 overexpression in HCT-116 cells enhanced cell proliferation through the Akt-dependent activation of NF-κB pathway. In addition, ESM-1 interacted with NF-κB and activated NF-κB promoter. This study demonstrates that ESM-1 is involved in cell survival, cell cycle progression, migration, invasion and EMT during tumor invasion in colorectal cancer. Based on our results, ESM-1 may be a useful therapeutic target for colorectal cancer.  相似文献   

12.
Mast cells are major players in allergic responses. IgE-dependent activation through FcεR leads to degranulation and cytokine production, both of which require Gab2. To clarify how the signals diverge at Gab2, we established Gab2 knock-in mice that express Gab2 mutated at either the PI3K or SH2 domain-containing protein tyrosine phosphatase-2 (SHP2) binding sites. Examination of these mutants showed that both binding sites were required for the degranulation and anaphylaxis response but not for cytokine production or contact hypersensitivity. Furthermore, the PI3K, but not the SHP2, binding site was important for granule translocation during degranulation. We also identified a small GTPase, ADP-ribosylation factor (ARF)1, as the downstream target of PI3K that regulates granule translocation. FcεRI stimulation induced ARF1 activation, and this response was dependent on Fyn and the PI3K binding site of Gab2. ARF1 activity was required for FcεRI-mediated granule translocation. These data indicated that Fyn/Gab2/PI3K/ARF1-mediated signaling is specifically involved in granule translocation and the anaphylaxis response.  相似文献   

13.

Background

Human DNA polymerase β (polβ) is a small monomeric protein that is essential for short-patch base excision repair. It plays an important role in regulating the sensitivity of tumor cells to chemotherapy.

Methods

We evaluated the mutation of polβ in a larger cohort of esophageal cancer (EC) patients by RT-PCR and sequencing analysis. The function of the mutation was evaluated by CCK-8, in vivo tumor growth, and flow cytometry assays.

Results

There are 229 patients with the polβ mutation, 18 patients with A613T mutation, 12 patients with G462T mutation among 538 ECs. Analysis results of survival time showed that EC patients with A613T, G462T mutation had a shorter survival than the others (P < 0.05). CCK-8 and flow cytometry assays results showed the A613T, G462T EC9706 cells were less sensitive than WT cells to 5-FU and cisplatin (P < 0.05). Experiments results in vivo showed that the tumor sizes of A613T and G462T group were larger than WT and polβ?/? groups (P < 0.05).

Conclusions

In this study, we discovered A to T point mutation at nucleotide 613 (A613T) and G to T point mutation at nucleotide 462 (G462T) in the polβ gene through 538 EC patients cohort study. A613T and G462T variant of DNA polymerase β weaken chemotherapy sensitivity of esophageal cancer.
  相似文献   

14.
Tetrahydrobiopterin (BH4) has been known to be an essential cofactor for nitric oxide synthase as well as the aromatic amino acid hydroxylases, which are involved in regulation of cellular fates including proliferation, migration and differentiation. In the present study, we report that sepiapterin, a stable form of BH4 precursor, modulates proliferation and migration in human lung cancer cells. Sepiapterin induction of cell proliferation in p53 wild-type A549 cells, but not in p53-deficient H1299 cells, is accompanied by enhanced expression of cell cycle-related proteins such as cyclin-dependent kinase 4 (Cdk4), cyclin D and cyclin E, and reduced expression of Cdk inhibitor p21WAF1/Cip1, demonstrating that sepiapterin-induced mitogenic responses might be associated with p53 expression status in lung cancer cells. In addition, sepiapterin enhances cell migration in A549 cells, but not H1299 cells. Finally, we show that sepiapterin induces A549 cell proliferation and migration through the activation of Akt and p70S6K signaling pathways, as evidenced by using Akt and p70S6K inhibitor. Collectively, these findings indicate that sepiapterin might play differential roles in regulation of cellular fates, depending on the status of p53 expression in lung cancer.  相似文献   

15.
16.
17.
CARMA3 was recently reported to be overexpressed in cancers and associated with the malignant behavior of cancer cells. However, the expression of CARMA3 and its biological roles in colon cancer have not been reported. In the present study, we analyzed the expression pattern of CARMA3 in colon cancer tissues and found that CARMA3 was overexpressed in 30.8% of colon cancer specimens. There was a significant association between CARMA3 overexpression and TNM stage (p=0.0383), lymph node metastasis (p=0.0091) and Ki67 proliferation index (p=0.0035). Furthermore, knockdown of CARMA3 expression in HT29 and HCT116 cells with high endogenous expression decreased cell proliferation and cell cycle progression while overexpression of CARMA3 in LoVo cell line promoted cell proliferation and facilitated cell cycle transition. Further analysis showed that CARMA3 knockdown downregulated and its overexpression upregulated cyclin D1 expression and phospho-Rb levels. In addition, we found that CARMA3 depletion inhibited p-IκB levels and NF-κB activity and its overexpression increased p-IκB expression and NF-κB activity. NF-κB inhibitor BAY 11-7082 reversed the role of CARMA3 on cyclin D1 upregulation. In conclusion, our study found that CARMA3 is overexpressed in colon cancers and contributes to malignant cell growth by facilitating cell cycle progression through NF-κB mediated upregulation of cyclin D1.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号