首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The efficacy of electroporation is known to vary significantly across a wide variety of biological research and clinical applications, but as of this writing, a generalized approach to simultaneously improve efficiency and maintain viability has not been available in the literature. To address that discrepancy, we here outline an approach that is based on the mapping of the scaling relationships among electroporation-mediated molecular delivery, cellular viability, and electric pulse parameters. The delivery of Fluorescein-Dextran into 3T3 mouse fibroblast cells was used as a model system. The pulse was rationally split into two sequential phases: a first precursor for permeabilization, followed by a second one for molecular delivery. Extensive data in the parameter space of the second pulse strength and duration were collected and analyzed with flow cytometry. The fluorescence intensity correlated linearly with the second pulse duration, confirming the dominant role of electrophoresis in delivery. The delivery efficiency exhibited a characteristic sigmoidal dependence on the field strength. An examination of short-term cell death using 7-Aminoactinomycin D demonstrated a convincing linear correlation with respect to the electrical energy. Based on these scaling relationships, an optimal field strength becomes identifiable. A model study was also performed, and the results were compared with the experimental data to elucidate underlying mechanisms. The comparison reveals the existence of a critical transmembrane potential above which delivery with the second pulse becomes effective. Together, these efforts establish a general route to enhance the functionality of electroporation.  相似文献   

2.
Electroporation is of interest for many drug-delivery and gene-therapy applications. Prior studies have shown that a two-pulse-electroporation protocol consisting of a short-duration, high-voltage first pulse followed by a longer, low-voltage second pulse can increase delivery efficiency and preserve viability. In this work the effects of the field strength of the first and second pulses and the inter-pulse delay time on the delivery of two different-sized Fluorescein–Dextran (FD) conjugates are investigated. A series of two-pulse-electroporation experiments were performed on 3T3-mouse fibroblast cells, with an alternating-current first pulse to permeabilize the cell, followed by a direct-current second pulse. The protocols were rationally designed to best separate the mechanisms of permeabilization and electrophoretic transport. The results showed that the delivery of FD varied strongly with the strength of the first pulse and the size of the target molecule. The delivered FD concentration also decreased linearly with the logarithm of the inter-pulse delay. The data indicate that membrane resealing after electropermeabilization occurs rapidly, but that a non-negligible fraction of the pores can be reopened by the second pulse for delay times on the order of hundreds of seconds. The role of the second pulse is hypothesized to be more than just electrophoresis, with a minimum threshold field strength required to reopen nano-sized pores or defects remaining from the first pulse. These results suggest that membrane electroporation, sealing, and re-poration is a complex process that has both short-term and long-term components, which may in part explain the wide variation in membrane-resealing times reported in the literature.  相似文献   

3.
Electroporation has received increasing attention in the past years, because it is a very powerful technique for physically introducing non-permeant exogenous molecular probes into cells. This work reports a microfluidic electroporation platform capable of performing multiple molecule delivery to mammalian cells with precise and molecular-dependent parameter control. The system’s ability to isolate cells with uniform size distribution allows for less variation in electroporation efficiency per given electric field strength; hence enhanced sample viability. Moreover, its process visualization feature allows for observation of the fluorescent molecular uptake process in real-time, which permits prompt molecular delivery parameter adjustments in situ for efficiency enhancement. To show the vast capabilities of the reported platform, macromolecules with different sizes and electrical charges (e.g., Dextran with MW of 3,000 and 70,000 Da) were delivered to metastatic breast cancer cells with high delivery efficiencies (>70%) for all tested molecules. The developed platform has proven its potential for use in the expansion of research fields where on-chip electroporation techniques can be beneficial.  相似文献   

4.
Electroporation's use for laboratory transfection and clinical chemotherapy is limited by an incomplete understanding of the effects of electroporation parameters on molecular uptake and cell viability. To address this need, uptake of calcein and viability of DU 145 prostate cancer cells were quantified using flow cytometry for more than 200 different combinations of experimental conditions. The experimental parameters included field strength (0.1-3.3 kV/cm), pulse length (0.05-20 ms), number of pulses (1-10), calcein concentration (10-100 microM), and cell concentration (0.6-23% by volume). These data indicate that neither electrical charge nor energy was a good predictor of electroporation's effects. Instead, both uptake and viability showed a complex dependence on field strength, pulse length, and number of pulses. The effect of cell concentration was explained quantitatively by electric field perturbations caused by neighboring cells. Uptake was shown to vary linearly with external calcein concentration. This large quantitative data set may be used to optimize electroporation protocols, test theoretical models, and guide mechanistic interpretations.  相似文献   

5.
Cryopreservation, directed differentiation, and genetic manipulation of human embryonic stem cells (hESCs) all require the transport of exogenous small molecules, proteins, or DNA into the cell. The absence of standard small and macromolecule loading techniques in hESCs as well as the inadequacies of current DNA transfection techniques have led us to develop electroporation as an efficient loading and transfection methodology. The electroporation parameters of pulse voltage, duration, and number have been explored and evaluated in terms of cell viability, molecular loading, and transfection efficiency on a per cell basis. Small molecule loading was assessed using propidium iodide (PI) and the disaccharide trehalose. Additionally, protein loading was investigated using a glutathione-S-transferase green fluorescent protein (GST-GFP) conjugate, and DNA transfection optimization was performed by constitutive expression of GFP from a plasmid. The optimum pulse voltage must balance cell viability, which decreases as voltage increases, and loading efficiency, which increases at higher voltages. Short pulse times of 0.05 ms facilitated PI and trehalose loading, whereas 0.5 ms or more was required for GST-GFP loading and DNA transfection. Multiple pulses increased per cell loading of all molecules, though there was a dramatic loss of viability with GST-GFP loading and DNA transfection, likely resulting from the longer pulse duration required to load these molecules.  相似文献   

6.
By variation of physical parameters (field strength, pulse duration) which result in electrofusion and electroporation, properties of the plasma membrane of different types of plant cell protoplasts were analyzed. The lower threshold for that field pulse intensity at which membrane breakdown occurred (recorded as fusion event) depended on pulse duration, protoplast size, and protoplast type (tobacco, oat; vacuolated, evacuolated). This fusion characteristic of plant protoplasts can also be taken as a measure of the charging process of the membrane and allows thus a non-invasive determination of the time constant and the specific membrane capacitance. Although the fusion yield was comparable at pulse duration/field strength couples of, e.g., 10 s/1.5 kV*cm–1 and 200 s/0.5 kV*cm–1, hybrid viability was not. Rates of cell wall regeneration and cell division of tobacco mesophyll protoplasts were not affected but may have been increased at short pulse duration/high field strength. Plating efficiency, in contrast, was significantly decreased with longer pulse duration at low field strengths.  相似文献   

7.
Optimization of electroporation for transfection of mammalian cell lines   总被引:6,自引:0,他引:6  
Electroporation can be a highly efficient method for introducing DNA molecules into cultured cells for transient expression of genes or for permanent genetic modification. However, effective transformation by electroporation requires careful optimization of electric field strength and pulse characteristics. We have used the transient expression of the firefly luciferase gene as a rapid and sensitive indicator of gene expression to describe the effects on transfection efficiency of altering electroporation field strength and shape. Using the luciferase assay, we investigated the correlation of cell viability with optimal transfection efficiency and determined the optimal parameters for a number of phenotypically distinct mammalian cell lines derived from the nervous and immune systems. The efficiency of electroporation under optimal conditions was compared with that obtained using DEAE-dextran or calcium phosphate-mediated transformation. Transfection by electroporation using square wave pulses, as opposed to exponentially decaying pulses, was found to be significantly increased by repetitive pulses. These methods improve the ability to obtain high efficiency gene transfer into many mammalian cell types.  相似文献   

8.
Factors influencing the transient expression of introduced foreign DNA in electroporated protoplasts and intact cells of sugar beet were determined by assaying for the activity of chloramphenicol acetyltransferase (CAT), using a rectangular pulse generating system. Extractable CAT activity depended upon 1) applied plasmid DNA concentration, 2) protoplast density, 3) the interaction between pulse field strength, duration, number, time interval between pulses and the resultant effect on culture viability, and 4) the physiological state of the protoplasts. Mesophyll protoplasts were more susceptible to damage by electroporation, and were more specific in their requirement for electroporations which allowed CAT expression, than were protoplasts derived from suspension culture cells. CAT activity was also demonstrated, at low levels, after electroporation of intact suspension culture cells, and could be increased by pectinase treatment of the cells before electroporation.  相似文献   

9.
Electroporation is an approach used to enhance the transport of large molecules to the cell cytosol in which a targeted tissue region is exposed to a series of electric pulses. The cell membrane, which normally acts as a barrier to large molecule transport into the cell interior, is temporarily destabilized due to the development of pores in the cell membrane. Consequently, agents that are ordinarily unable enter the cell are able to pass through the cell membrane. Of possible concern when exposing biological tissue to an electric field is thermal tissue damage associated with joule heating. This paper explores the thermal effects of various geometric, biological, and electroporation pulse parameters including the blood vessel presence and size, plate electrode configuration, and pulse duration and frequency. A three-dimensional transient finite volume model of in vivo parallel plate electroporation of liver tissue is used to develop a better understanding of the underlying relationships between the physical parameters involved with tissue electroporation and resulting thermal damage potential.  相似文献   

10.
In this paper, the influence of various parameters on plasmid transformation by electroporation of Staphylococcus epidermidis Tü3298 was investigated. Cell growth conditions, various concentrations and forms of plasmid DNA, field strength, pulse duration and media for electroporation and regeneration were tested. In order to obtain optimal transformation efficiency, the cells were incubated for 30 min with DNA before pulsing. With the optimized procedure, other staphylococcal species such as S. aureus, S. staphylolyticus and S. carnosus were transformed with an efficiency up to 3 X 10(5) transformants per micrograms pC194 plasmid DNA.  相似文献   

11.
Access to the cell cytoplasm in viable cells may permit direct labeling or manipulation of intracellular molecules and metabolic processes. One method to gain access to the cell cytoplasm is by electroporation, a technique that transiently creates pores in cell membranes by means of applied electrical fields. We used electroporation to introduce large-molecular-mass dextrans and proteins as probes of the cytoplasmic compartment in human gingival fibroblasts. Electrical field strength and pulse decay time were optimized to obtain cellular viability greater than 80%. Analysis by confocal microscopy and by fluorescence spectrophotometry demonstrated that a large proportion of high-molecular-mass probe was membrane-bound after electroporation. Trypsinization did not affect membrane-bound FITC-dextran but eliminated protein probe incorporated into the membrane, thereby permitting measurement of only intracellular, cytoplasmic label. Proteins of up to 66 kDa were incorporated at intracellular concentrations of 10(-15) M. After electroporation under optimal conditions, incorporated anti-vimentin antibodies were capable of binding to vimentin. Cells electroporated in the presence of RNase A exhibited significant reductions of cellular RNA. Electroporation appears to be a useful approach to probe or perturb specific cellular processes by introduction of functional molecular species into the cytoplasm of viable cells.  相似文献   

12.
Plasmid DNAs were introduced by electroporation into Bacillus subtilis PB1424 as an alternative to competent-cell or protoplast transformation. The maximum electroporation efficiency was 10(4) transformants/microgram DNA. Parameters including growth phase of cells, ionic strength of the suspending medium, concentration and size of plasmid DNAs, amplitude and duration of the pulse, were evaluated in order to determine conditions that improved transformation efficiency.  相似文献   

13.
Intracellular effect of ultrashort electrical pulses   总被引:20,自引:0,他引:20  
A simple electrical model for biological cells predicts an increasing probability for electric field interactions with cell substructures of prokaryotic and eukaryotic cells when the electric pulse duration is reduced into the sub-microsecond range. The validity of this hypothesis was verified experimentally by applying electrical pulses with electric field intensities of up to 5.3 MV/m to human eosinophils in vitro. When 3-5 pulses of 60 ns duration were applied to human eosinophils, intracellular granules were modified without permanent disruption of the plasma membrane. In spite of the extreme electrical power levels applied to the cells thermal effects could be neglected because of the ultrashort pulse duration. The intracellular effect extends conventional electroporation to cellular substructures and opens the potential for new applications in apoptosis induction, gene delivery to the nucleus, or altered cell functions, depending on the electrical pulse conditions.  相似文献   

14.
Electroporation is a way to induce nanometersized membrane pore for exogenous substances delivery into cytoplasm using an artificial electric field. Now it was widely used for molecules transfer especially in molecular experiments and genetic aspects. In recent years, modern electroporation on the embryo was developed, whose most important point is that it adopts low energy and rectangular pulse that could obtain high transfection efficiency and low damage to the embryo. This paper reviewed on the pool of application: from lab works to human clinical treatments.  相似文献   

15.
Tumor ablation with irreversible electroporation   总被引:1,自引:0,他引:1  
We report the first successful use of irreversible electroporation for the minimally invasive treatment of aggressive cutaneous tumors implanted in mice. Irreversible electroporation is a newly developed non-thermal tissue ablation technique in which certain short duration electrical fields are used to permanently permeabilize the cell membrane, presumably through the formation of nanoscale defects in the cell membrane. Mathematical models of the electrical and thermal fields that develop during the application of the pulses were used to design an efficient treatment protocol with minimal heating of the tissue. Tumor regression was confirmed by histological studies which also revealed that it occurred as a direct result of irreversible cell membrane permeabilization. Parametric studies show that the successful outcome of the procedure is related to the applied electric field strength, the total pulse duration as well as the temporal mode of delivery of the pulses. Our best results were obtained using plate electrodes to deliver across the tumor 80 pulses of 100 micros at 0.3 Hz with an electrical field magnitude of 2500 V/cm. These conditions induced complete regression in 12 out of 13 treated tumors, (92%), in the absence of tissue heating. Irreversible electroporation is thus a new effective modality for non-thermal tumor ablation.  相似文献   

16.
Human umbilical cord blood is frequently used as a source of transplantable hematopoietic cells and more recently as a target of gene therapy - a new approach for treatment of various disorders. The aim of our study was optimisation of the transfection conditions of cord blood-derived CD34(+) hematopoietic cells. Mononuclear cells fraction was isolated from cord blood samples by density gradient centrifugation. Subsequently, CD34(+) hematopoietic cells were separated on immunomagnetic MiniMACS columns. Pure population of CD34(+) cells was incubated in a serum free medium supplemented with thrombopoietin, stem cell factor and Flt-3 ligand for 48 h and then transfected with plasmid DNA carrying the enhanced version of green fluorescent protein (EGFP) as a reporter gene. We studied the influence of various pulse settings and DNA concentrations on the transfection efficiency, measured by flow cytometry as the fluorescence of target cells due to the expression of EGFP. The optimal settings were as follows: 4 mm cuvette, 1600 microF, 550 V/cm, and 10 microg of DNA per 500 microl. With these settings we obtained a high transfection frequency (41.2%) without a marked decrease of cell viability. An increase of the pulse capacitance and/or of DNA concentration resulted in a greater electroporation efficiency, but also in a decrease of cell viability. In conclusion, the results described here allow one to recommend electroporation as an efficient method of gene delivery into CD34(+) hematopoietic cells derived from human umbilical cord blood.  相似文献   

17.
The improvement of gene therapy protocols is intimately related to the establishment of efficient gene transfer methods. Electroporation has been increasingly employed in in vitro and in vivo protocols, and much attention has been given to increasing its transfection potential. The method is based on the application of an electric field of short duration and high voltage to the cells, forming reversible pores through which molecules can enter the cell. In this work, we describe the optimization of a protocol for the electroporation of K562 cells involving the combination of electric field, resistance and capacitance values. Using RPMI 1640 as pulsing buffer and 30 μg of pEGFP-N1 plasmid, 875 V cm−1, 500 μF and infinite resistance, we achieved transfection rates of 82.41 ± 3.03%, with 62.89 ± 2.93% cell viability, values higher than those reported in the literature. Analyzing cell cycle after electroporation, with three different electric field conditions, we observed that in a heterogeneous population of cells, viability of G1 cells is less affected by electroporation than that of cells in late S and G2/M phases. We also observed that efficiency of electroporation can be improved using the DNAse inhibitor Zn, immediately after the pulse. These results can represent a significant improvement of current methods of electroporation of animal and plant cells.  相似文献   

18.
Electroporation of abalone sperm enhances sperm-DNA association   总被引:2,自引:0,他引:2  
The ability of sperm from the black-footed abalone Haliotis iris to take up foreign DNA in solution has been demonstrated. The efficiency of DNA uptake is related to the conditions of electroporation, including field strength (625 V cm−1, 1000 V cm−1), pulse length (18.6 ms, 27.4ms) and number of pulses (1, 2), and DNA concentration (20, 100 μg ml−1). Sperm motility decreased with increased field strength and pulse number. At a field strength of 625 V cm−1, neither the pulse length nor pulse number enhanced DNA uptake. A 40% enhancement in DNA uptake was observed when the sperm were shocked at 1000 V cm−1 with two long pulses (27.4 ms each). Linear regression analysis revealed that pulse number ( p = 0.013) and field strength ( P =0.039) were the most important factors in sperm–DNA interaction. Higher DNA concentration enhanced sperm DNA uptake irrespective of field strength, pulse length and pulse number. The optimal electroporation conditions for DNA uptake were 1000 V cm', with two pulses of 27.4 ms each, and a DNA concentration of 100 μg ml−1.  相似文献   

19.
The uptake and expression of cucumber mosaic viral (CMV) RNA by tobacco protoplasts was examined using both square wave and exponential wave electroporation pulses. These electropulses, when supplied at sufficient field strength for a critical duration, enabled RNA to be incorporated and expressed in more than 60% of the surviving protoplasts. The results of experiments using these two electroporation wave forms showed significant differences in RNA uptake and expression. The number of viable protoplasts and cells showing expression of RNA was higher over a much broader range of experimental conditions using the square rather than exponential wave generator, even when both machines were optimized for maximal performance. However, at a narrow range of low field strengths the exponential wave pulse generated a higher percentage of transformants than did the square wave pulse. It was shown that after an electroporation pulse from either wave form, there were viable cells which expressed foreign RNA at predictable levels.  相似文献   

20.
Summary An electric field-mediated transformation (i.e. electroporation) was performed to determine optimal conditions for P. putida transformation. The effects of culture age, electroporation buffer composition, electric field strength, pulse time constant and DNA concentration on transformation efficiency were examined. When plasmid DNA of 8 to 11 kb in size was used with an electroporation buffer containing 1 mM HEPES (pH 7.0), maximum transformation efficiency of 1.0 × 107 transformants/g DNA was obtained at field strength of 12 kV/cm with pulse time of 2.5 millisecond. A linear increase in the number of transformants was observed as DNA concentration was increased over 4 orders of magnitude. A linear relationship was observed between growth phase and transformation efficiency up to OD600 = 2.0. This reliable and simple method should be useful for introduction of plasmid DNA into intact P. putida cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号