首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two methods for reconstructing the free-energy landscape of a DNA molecule from the knowledge of the equilibrium unzipping force versus extension signal are introduced: a simple and fast procedure, based on a parametric representation of the experimental force signal, and a maximum-likelihood inference of coarse-grained free-energy parameters. In addition, we propose a force alignment procedure to correct for the drift in the experimental measure of the opening position, a major source of error. For unzipping data obtained by Huguet et al., the reconstructed basepair (bp) free energies agree with the running average of the true free energies on a 20–50 bp scale, depending on the region in the sequence. Features of the landscape at a smaller scale (5–10 bp) could be recovered in favorable regions at the beginning of the molecule. Based on the analysis of synthetic data corresponding to the 16S rDNA gene of bacteria, we show that our approach could be used to identify specific DNA sequences among thousands of homologous sequences in a database.  相似文献   

2.
3.
Lam PM  Levy JC 《Biopolymers》2005,79(6):287-291
We have studied theoretically the unzipping of a double-stranded DNA from a condensed globule state by an external force. At constant force, we found that the double-stranded DNA unzips an at critical force Fc and the number of unzipped monomers M goes as M approximately (Fc - F)-3, for both the homogeneous and heterogeneous double-stranded DNA sequence. This is different from the case of unzipping from an extended coil state in which the number of unzipped monomers M goes as M approximately (Fc - F)-chi, where the exponent chi is either 1 or 2 depending on whether the double-stranded DNA sequence is homogeneous or heterogeneous, respectively. In the case of unzipping at constant extension, we found that for a double-stranded DNA with a very large number N of base pairs, the force remains almost constant as a function of the extension, before the unraveling transition, at which the force drops abruptly to zero. Right at the unraveling transition, the number of base pairs remaining in the condensed globule state is still very large and goes as N(3/4), in agreement with theoretical predictions of the unraveling transition of polymers stretched by an external force.  相似文献   

4.
This article explores the role of some geometrical factors on the electrophoretically driven translocations of macromolecules through nanopores. In the case of asymmetric pores, we show how the entry requirements and the direction of translocation can modify the information content of the blocked ionic current as well as the transduction of the electrophoretic drive into a mechanical force. To address these effects we studied the translocation of single-stranded DNA through an asymmetric α-hemolysin pore. Depending on the direction of the translocation, we measure the capacity of the pore to discriminate between both DNA orientations. By unzipping DNA hairpins from both sides of the pores we show that the presence of single strand or double strand in the pore can be discriminated based on ionic current levels. We also show that the transduction of the electrophoretic drive into a denaturing mechanical force depends on the local geometry of the pore entrance. Eventually we discuss the application of this work to the measurement of energy barriers for DNA unzipping as well as for protein binding and unfolding.  相似文献   

5.
DNA unzipping, the separation of its double helix into single strands, is crucial in modulating a host of genetic processes. Although the large-scale separation of double-stranded DNA has been studied with a variety of theoretical and experimental techniques, the minute details of the very first steps of unzipping are still unclear. Here, we use atomistic molecular-dynamics simulations, coarse-grained simulations, and a statistical-mechanical model to study the initiation of DNA unzipping by an external force. Calculation of the potential of mean force profiles for the initial separation of the first few terminal basepairs in a DNA oligomer revealed that forces ranging between 130 and 230 pN are needed to disrupt the first basepair, and these values are an order of magnitude larger than those needed to disrupt basepairs in partially unzipped DNA. The force peak has an echo of ∼50 pN at the distance that unzips the second basepair. We show that the high peak needed to initiate unzipping derives from a free-energy basin that is distinct from the basins of subsequent basepairs because of entropic contributions, and we highlight the microscopic origin of the peak. To our knowledge, our results suggest a new window of exploration for single-molecule experiments.  相似文献   

6.
7.
Force measurements are performed on single DNA molecules with an optical trapping interferometer that combines subpiconewton force resolution and millisecond time resolution. A molecular construction is prepared for mechanically unzipping several thousand-basepair DNA sequences in an in vitro configuration. The force signals corresponding to opening and closing the double helix at low velocity are studied experimentally and are compared to calculations assuming thermal equilibrium. We address the effect of the stiffness on the basepair sensitivity and consider fluctuations in the force signal. With respect to earlier work performed with soft microneedles, we obtain a very significant increase in basepair sensitivity: presently, sequence features appearing at a scale of 10 basepairs are observed. When measured with the optical trap the unzipping force exhibits characteristic flips between different values at specific positions that are determined by the base sequence. This behavior is attributed to bistabilities in the position of the opening fork; the force flips directly reflect transitions between different states involved in the time-averaging of the molecular system.  相似文献   

8.
9.
Remodelling the methylome is a hallmark of mammalian development and cell differentiation. However, current knowledge of DNA methylation dynamics in human tissue specification and organ development largely stems from the extrapolation of studies in vitro and animal models. Here, we report on the DNA methylation landscape using the 450k array of four human tissues (amnion, muscle, adrenal and pancreas) during the first and second trimester of gestation (9,18 and 22 weeks). We show that a tissue-specific signature, constituted by tissue-specific hypomethylated CpG sites, was already present at 9 weeks of gestation (W9). Furthermore, we report large-scale remodelling of DNA methylation from W9 to W22. Gain of DNA methylation preferentially occurred near genes involved in general developmental processes, whereas loss of DNA methylation mapped to genes with tissue-specific functions. Dynamic DNA methylation was associated with enhancers, but not promoters. Comparison of our data with external fetal adrenal, brain and liver revealed striking similarities in the trajectory of DNA methylation during fetal development. The analysis of gene expression data indicated that dynamic DNA methylation was associated with the progressive repression of developmental programs and the activation of genes involved in tissue-specific processes. The DNA methylation landscape of human fetal development provides insight into regulatory elements that guide tissue specification and lead to organ functionality.  相似文献   

10.
Inferring Coalescence Times from DNA Sequence Data   总被引:10,自引:7,他引:10       下载免费PDF全文
The paper is concerned with methods for the estimation of the coalescence time (time since the most recent common ancestor) of a sample of intraspecies DNA sequences. The methods take advantage of prior knowledge of population demography, in addition to the molecular data. While some theoretical results are presented, a central focus is on computational methods. These methods are easy to implement, and, since explicit formulae tend to be either unavailable or unilluminating, they are also more useful and more informative in most applications. Extensions are presented that allow for the effects of uncertainty in our knowledge of population size and mutation rates, for variability in population sizes, for regions of different mutation rate, and for inference concerning the coalescence time of the entire population. The methods are illustrated using recent data from the human Y chromosome.  相似文献   

11.
蛋鸡J亚群白血病病毒的分离鉴定及序列分析   总被引:16,自引:0,他引:16  
王辉  崔治中 《病毒学报》2008,24(5):369-375
通过接种鸡胚成纤维细胞((CEF)及特异性单抗的间接荧光抗体反应(IFA),从中国商品代蛋鸡群中首次分离到J亚群白血病病毒(ALV-J).对其env基因编码的氨基酸序列及3'-末端(3'-Ter)序列与国内外来源于白羽肉鸡的毒株作了比较分析.结果显示,这两株病毒的gp85基因编码的氨基酸序列与国外5个毒株同源性仅为83.4%~87.3%,与国内来源于白羽肉鸡的8株病毒同源性也仅为86.4%~89.6%.gp37基因编码的氨基酸序列与5个国外毒株同源性为91.8%~97.0%,与8个国内毒株同源性为93.9%~95.9%.另外,国内来源于白羽肉鸡的各毒株的3'-Ter序列在"E"区均有明显缺失,但本次分离的来源于蛋鸡群的毒株在"E"区没有缺失突变.与所列出的13株国内外毒株相比,这两个毒株在3'-Ter的缺失最少,较接近于原型株HPRS-103.显然这两株病毒的来源不同于国内白羽肉鸡.  相似文献   

12.
DNA条形码技术的迅速发展极大地推动了植物的鉴定工作,随着鉴定工作的不断进行和新序列的不断发现,利用ITS2序列进行鉴定已成为目前较为广泛使用的鉴定技术。本文根据ITS2序列的特点和性质,介绍ITS2序列鉴定的一般过程,并分析其特点和存在问题,以期为植物鉴定方面的研究提供参考。  相似文献   

13.
Sequence arrangement in satellite DNA from the muskmelon   总被引:1,自引:0,他引:1       下载免费PDF全文
Two fractions of a satellite DNA from the muskmelon (Cucumis melo L.) isolated as a unimodal peak from CsCl gradients, differ in melting properties and complexity as estimated by reassociation kinetics. At 49.8 C, all of the low melting fraction was denatured and all of the high melting fraction was native. There were almost no partially denatured molecules detected in the electron microscope at this temperature. This observation provides direct evidence that the two fractions are not closely linked. We conclude that satellite I, the high tm, low complexity fraction, exists as a 600-nucleotide sequence in blocks of at least 67 tandem repeats. Since the complexity of the low melting fraction, satellite II, is greater than the size of the molecules in our assay, we can only say that the minimum size of each unit of satellite II is 2.5 × 107 daltons. It is unlikely that any spacer sequences are interspersed with either satellite.  相似文献   

14.
N. Takezaki  M. Nei 《Genetics》1996,144(1):389-399
Recently many investigators have used microsatellite DNA loci for studying the evolutionary relationships of closely related populations or species, and some authors proposed new genetic distance measures for this purpose. However, the efficiencies of these distance measures in obtaining the correct tree topology remains unclear. We therefore investigated the probability of obtaining the correct topology (P(C)) for these new distances as well as traditional distance measures by using computer simulation. We used both the infinite-allele model (IAM) and the stepwise mutation model (SMM), which seem to be appropriate for classical markers and microsatellite loci, respectively. The results show that in both the IAM and SMM CAVALLI-SFORZA and EDWARDS'' chord distance (D(C)) and NEI et al.''s D(A) distance generally show higher P(C) values than other distance measures, whether the bottleneck effect exists or not. For estimating evolutionary times, however, NEI''s standard distance and GOLDSTEIN et al.''s (δ μ)(2) are more appropriate than other distances. Microsatellite DNA seems to be very useful for clarifying the evolutionary relationships of closely related populations.  相似文献   

15.
16.
Summary Threeori elements (ori 2,ori 5, andori 7) have been sequenced inSaccharomyces cerevisiae strain Dip 2 and compared to the equivalentori elements of a second strain (B). Bothori 2 andori 5 exhibit 98% base matching between strains Dip 2 and B. In contrast, the thirdori element (ori 7) exhibits extensive sequence rearrangements whereby a segment located downstream in the consensus strain occurs within theori structure in Dip 2. This represents a novel polymorphic form of the yeast mitochondrial genome.  相似文献   

17.

Background

Prestin, encoded by the gene SLC26A5, is a transmembrane protein of the cochlear outer hair cell (OHC). Prestin is required for the somatic electromotile activity of OHCs, which is absent in OHCs and causes severe hearing impairment in mice lacking prestin. In humans, the role of sequence variations in SLC26A5 in hearing loss is less clear. Although prestin is expected to be required for functional human OHCs, the clinical significance of reported putative mutant alleles in humans is uncertain.

Methodology/Principal Findings

To explore the hypothesis that SLC26A5 may act as a modifier gene, affecting the severity of hearing loss caused by an independent etiology, a patient-control cohort was screened for DNA sequence variations in SLC26A5 using sequencing and allele specific methods. Patients in this study carried known pathogenic or controversial sequence variations in GJB2, encoding Connexin 26, or confirmed or suspected sequence variations in SLC26A5; controls included four ethnic populations. Twenty-three different DNA sequence variations in SLC26A5, 14 of which are novel, were observed: 4 novel sequence variations were found exclusively among patients; 7 novel sequence variations were found exclusively among controls; and, 12 sequence variations, 3 of which are novel, were found in both patients and controls. Twenty-one of the 23 DNA sequence variations were located in non-coding regions of SLC26A5. Two coding sequence variations, both novel, were observed only in patients and predict a silent change, p.S434S, and an amino acid substitution, p.I663V. In silico analysis of the p.I663V amino acid variation suggested this variant might be benign. Using Fisher''s exact test, no statistically significant difference was observed between patients and controls in the frequency of the identified DNA sequence variations. Haplotype analysis using HaploView 4.0 software revealed the same predominant haplotype in patients and controls and derived haplotype blocks in the patient-control cohort similar to those generated from the International HapMap Project.

Conclusions/Significance

Although these data fail to support a hypothesis that SLC26A5 acts as a modifier gene of GJB2-related hearing loss, the sample size is small and investigation of a larger population might be more informative. The 14 novel DNA sequence variations in SLC26A5 reported here will serve as useful research tools for future studies of prestin.  相似文献   

18.
DNA microarrays find applications in an increasing number of domains where more quantitative results are required. DNA being a charged polymer, the repulsive interactions between the surface of the microarray and the targets in solution are increasing upon hybridization. Such electrostatic penalty is generally reduced by increasing the salt concentration. In this article, we present equilibrium-melting curves obtained from dedicated physicochemical experiments on DNA microarrays in order to get a better understanding of the electrostatic penalty incurred during the hybridization reaction at the surface. Various salt concentrations have been considered and deviations from the commonly used Langmuir adsorption model are experimentally quantified for the first time in agreement with theoretical predictions.  相似文献   

19.
DNA methylation in Bacillus amyloliquefaciens strain H (Bam)2 and Bacillus brevis (Bbv) has been examined by a variety of techniques. In vivo labelling studies revealed that Bam DNA contains no N6-methyladenine (MeAde), but contains 5-methylcytosine (MeCyt); approximately 0·7% of the cytosine residues are methylated.DNA methylase activity was partially purified from both Bam and Bbv; the Bam enzyme preparation transferred methyl groups from S-adenosyl-l-[methyl-3H]methionine ([3H]AdoMet) to specific DNA cytosine residues only; in agreement with Vanyushin & Dobritsa (1975), the Bbv enzyme preparation methylated both DNA adenine and cytosine residues. The (partial) sequence specificity of the methylases was determined by analyzing [3H]methyl-labelled dinucleotides obtained from enzymatic digests of DNA methylated in vitro. Bam and Bbv each contain a DNA-cytosine methylase with overlapping sequence specificity; e.g. both enzymes produce G-C1, C1-A and C1-T. This is consistent with a single, twofold symmetrical methylation sequence of 5′ … G-C1-(A or T)-G-C … 3′; this was observed by Vanyushin & Dobritsa (1975) for a different Bbv strain. Bam contains a second DNA-cytosine methylase (not present in Bbv), which produces T-C1 and C1-T. We propose that this methylase is the BamI modification enzyme, and that the modified sequence is 5′ … G-G-A-T-C1-C … 3′.Bbv appears to contain two DNA-adenine methylases which produce the (partial) methylated sequences, 5′ … G-A1-T … 3′ and 5′ … A-A1-G … 3′, respectively; in the former case, all the G-A-T-C sites on Bbv DNA appear to be methylated.  相似文献   

20.
Mitochondrial DNA (mtDNA) deletions are a common cause of mitochondrial disorders. Large mtDNA deletions can lead to a broad spectrum of clinical features with different age of onset, ranging from mild mitochondrial myopathies (MM), progressive external ophthalmoplegia (PEO), and Kearns-Sayre syndrome (KSS), to severe Pearson syndrome. The aim of this study is to investigate the molecular signatures surrounding the deletion breakpoints and their association with the clinical phenotype and age at onset. MtDNA deletions in 67 patients were characterized using array comparative genomic hybridization (aCGH) followed by PCR-sequencing of the deletion junctions. Sequence homology including both perfect and imperfect short repeats flanking the deletion regions were analyzed and correlated with clinical features and patients' age group. In all age groups, there was a significant increase in sequence homology flanking the deletion compared to mtDNA background. The youngest patient group (<6 years old) showed a diffused pattern of deletion distribution in size and locations, with a significantly lower sequence homology flanking the deletion, and the highest percentage of deletion mutant heteroplasmy. The older age groups showed rather discrete pattern of deletions with 44% of all patients over 6 years old carrying the most common 5 kb mtDNA deletion, which was found mostly in muscle specimens (22/41). Only 15% (3/20) of the young patients (<6 years old) carry the 5 kb common deletion, which is usually present in blood rather than muscle. This group of patients predominantly (16 out of 17) exhibit multisystem disorder and/or Pearson syndrome, while older patients had predominantly neuromuscular manifestations including KSS, PEO, and MM. In conclusion, sequence homology at the deletion flanking regions is a consistent feature of mtDNA deletions. Decreased levels of sequence homology and increased levels of deletion mutant heteroplasmy appear to correlate with earlier onset and more severe disease with multisystem involvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号