首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
人类连接蛋白26(Connexin 26,Cx26)已被看作乳腺癌上皮细胞中的抑瘤基因候选者.为了阐明此基因的调控机理,对其转译起始点上游的一个具有启动功能的1.6 kb 片段采用exo Ⅲ构建10个单向删除重组体后进行了CAT报告基因分析.结果表明,此1.6 kb 片段其启动子功能部位位于5′端200 bp 范围内.其中含有-TGT盒(位于182~187 bp),一个TTAAAA 盒位于158~163 bp,这是人类Cx26基因的又一启动区,这些发现无疑地对了解和阐明Cx26基因在乳腺发育过程中及其病理生理作用的复杂调控具有特别重要的意义.  相似文献   

3.
4.
Zhong Y  Hu YJ  Yang Y  Peng W  Sun Y  Chen B  Huang X  Kong WJ 《Mutation research》2011,712(1-2):11-19
Mitochondrial DNA (mtDNA) mutations, especially deletions, have been suggested to play an important role in aging and degenerative diseases. In particular, the common deletion in humans and rats (4977bp and 4834bp deletion, respectively) has been shown to accumulate with age in post-mitotic tissues with high energetic demands. Among numerous deletions, the common deletion has been proposed to serve as a molecular marker for aging and play a critical role in presbyacusis. However, so far no previous publication has quantified the contribution of common deletion to the total burden of mtDNA deletions in tissues during aging process. In the present study, we established a rat model with various degrees of aging in inner ear induced by three different doses of d-galactose (d-gal) administration. Firstly, multiple mtDNA deletions in inner ear were detected by nested PCR and long range PCR. In addition to the common deletion, three novel mtDNA deletions were identified. All four deletions, located in the major arc of mtDNA, are flanked by direct repeats and involve the cytochrome c oxidase (COX) subunit III gene, encoded by mtDNA. Additionally, absolute quantitative real-time PCR assay was used to detect the level of common deletion and total deletion burden of mtDNA. The quantitative data show that the common deletion is the most frequent type of mtDNA deletions, exceeding 67.86% of the total deletion burden. Finally, increased mtDNA copy number, reduced COX activity and mosaic ultrastructural impairments in inner ear were identified in d-gal-induced aging rats. The increase of mtDNA replication may contribute to the accelerated accumulation of mtDNA deletions, which may result in impairment of mitochondrial function in inner ear. Taken together, these findings suggest that the common deletion may serve as an ideal molecular marker to assess the mtDNA damage in inner ear during aging.  相似文献   

5.
间隙连接蛋白 (Cx)基因在胚胎发育、细胞生长、分化以及细胞内环境的稳定过程中起重要调节作用 .肿瘤发生与Cx基因的表达及功能异常密切相关 ,肿瘤细胞常存在Cx基因表达下调或缺失 .将人Cx2 6基因编码区cDNA序列 ,亚克隆于真核表达载体pcDNA3 1(+) ,采用脂质体转染 ,将重组表达载体pcDNA3 1(+) Cx2 6转入鼻咽癌细胞系HNE1,使Cx2 6基因在HNE1中重表达 ,探讨Cx2 6基因对鼻咽癌细胞系HNE1的生物学功能的影响 .研究结果表明 :Cx2 6基因的重表达 ,抑制HNE1细胞生长 ,细胞周期阻滞于G0 G1期 ,HNE1细胞的克隆形成能力下降 ,裸鼠致瘤能力减弱 .  相似文献   

6.
To elucidate the mode of action of dominant mutant connexins in causing inherited skin diseases, transgenic mice were produced that express the true Vohwinkel syndrome-associated mutant Cx26 (D66H), from a keratin 10 promoter, specifically in the suprabasal epidermal keratinocytes. Following birth, the transgenic mice developed keratoderma similar to that of human carriers of Cx26 (D66H). Expression of the transgene resulted in a loss of Cx26 and Cx30 at intercellular junctions of epidermal keratinocytes and accumulation of these connexins in the cytoplasm. Injection of primary mouse keratinocytes with Lucifer Yellow showed no difference in terms of dye spreading between transgenic and non transgenic keratinocytes in vitro. Expression of the mutant Cx26 (D66H) did not interfere with the formation of the epidermal water barrier during late embryonic development. Attempts to produce transgenic mice expressing the wild type form of Cx26 from the K10 promoter failed to produce viable animals although transgenic embryos were recovered at days 9 and 12 of gestation, suggesting that the transgene might be embryonic lethal.  相似文献   

7.
8.
The GJB2 gene, encoding Connexin26 (Cx26), is one of the most common causes of inherited deafness. Clinically, mutations in GJB2 cause congenital deafness or late-onset progressive hearing loss. Recently, it has been reported that Cx26 haploid deficiency accelerates the development of age-related hearing loss (ARHL). However, the roles of cochlear Cx26 in the hearing function of aged animals remain unclear. In this study, we revealed that the Cx26 expression was significantly reduced in the cochleae of aged mice, and further explored the underlying molecular mechanism for Cx26 degradation. Immunofluorescence co-localization results showed that Cx26 was internalized and degraded by lysosomes, which might be one of the important ways for Cx26 degradation in the cochlea of aged mice. Currently, whether the degradation of Cx26 in the cochlea leads directly to ARHL, as well as the mechanism of Cx26 degradation-related hearing loss are still unclear. To address these questions, we generated mice with Cx26 knockout in the adult cochlea as a model for the natural degradation of Cx26. Auditory brainstem response (ABR) results showed that Cx26 knockout mice exhibited high-frequency hearing loss, which gradually progressed over time. Pathological examination also revealed the degeneration of hair cells and spiral ganglions, which is similar to the phenotype of ARHL. In summary, our findings suggest that degradation of Cx26 in the cochlea accelerates the occurrence of ARHL, which may be a novel mechanism of ARHL.  相似文献   

9.
10.
The physiological importance of connexin-26 (Cx26) gap junctions in regulating auditory function is indicated by the finding that autosomal recessive DFNB1 deafness is associated with mutations of the Cx26 gene. To investigate the pathogenic role of Cx26 mutation in recessive hearing loss, four putative DFNB1 Cx26 mutants (V84L, V95M, R127H, and R143W) were stably expressed in N2A cells, a communication-deficient cell line. In N2A cells expressing (R127H) Cx26 gap junctions, macroscopic junctional conductance and ability of transferring neurobiotin between transfected cells were greatly reduced. Despite the formation of defective junctional channels, immunoreactivity of (R127H) Cx26 was mainly localized in the cell membrane and prominent in the region of cell-cell contact. Mutant (V84L), (V95M), or (R143W) Cx26 protein formed gap junctions with a junctional conductance similar to that of wild-type Cx26 junctional channels. (V84L), (V95M), or (R143W) Cx26 gap junctions also permitted neurobiotin transfer between pairs of transfected N2A cells. The present study suggests that (R127H) mutation associated with hereditary sensorineural deafness results in the formation of defective Cx26 gap junctions, which may lead to the malfunction of cochlear gap junctions and hearing loss. Further studies are required to determine the exact mechanism by which mutant (V84L), (V95M), and (R143W) Cx26 proteins, which are capable of forming functional homotypic junctional channels in N2A cells, cause the cochlear dysfunction and sensorineural deafness.  相似文献   

11.
12.
Connexin26 (Cx26) mutation is the most common cause for non-syndromic hereditary deafness. Different congenital Cx26 null mouse models revealed a profound hearing loss pattern and developmental defect in the cochlea. Our study aimed at establishing a Cx26 knocking down mouse model at different postnatal time points and to investigate the time course and pattern of the hearing loss and cell degeneration in these models. Morphologic changes were observed for 5 months to detect long-term diversities among these models. Depending on the time point when Cx26 expression was reduced, mild to profound hearing loss patterns were found in different groups. Malformed organ of Corti with distinct cell loss in middle turn was observed only in early Cx26 reduction group while mice in late Cx26 reduction group developed normal organ of Corti and only suffered a few hair loss in the basal turn. These results indicated that Cx26 may play essential roles in the postnatal maturation of the cochlea, and its role in normal hearing at more mature stage may be replaceable.  相似文献   

13.
Mutations in the gene encoding the gap junction protein connexin26 (Cx26) are responsible for the autosomal recessive isolated deafness, DFNB1, which accounts for half of the cases of prelingual profound hereditary deafness in Caucasian populations. To date, in vivo approaches to decipher the role of Cx26 in the inner ear have been hampered by the embryonic lethality of the Cx26 knockout mice. To overcome this difficulty, we performed targeted ablation of Cx26 specifically in one of the two cellular networks that it underlies in the inner ear, namely, the epithelial network. We show that homozygous mutant mice, Cx26(OtogCre), have hearing impairment, but no vestibular dysfunction. The inner ear developed normally. However, on postnatal day 14 (P14), i.e., soon after the onset of hearing, cell death appeared and eventually extended to the cochlear epithelial network and sensory hair cells. Cell death initially affected only the supporting cells of the genuine sensory cell (inner hair cell, IHC), thus suggesting that it could be triggered by the IHC response to sound stimulation. Altogether, our results demonstrate that the Cx26-containing epithelial gap junction network is essential for cochlear function and cell survival. We conclude that prevention of cell death in the sensory epithelium is essential for any attempt to restore the auditory function in DFNB1 patients.  相似文献   

14.
目的 在HeLa宫颈癌细胞中研究不同浓度的多西环素对缝隙连接蛋白Cx26/Cx32表达及由其形成的缝隙连接通讯功能的影响.方法 采用Western印迹检测HeLa细胞中Cx26/Cx32的蛋白表达;荧光示踪实验用于检测HeLa细胞中由Cx26/Cx32形成的缝隙连接通讯功能.结果 Western印迹结果显示多西环素在0.01~1 μg/ml的范围内,随着剂量的增加,Cx26/Cx32蛋白表达水平增加;荧光示踪实验结果显示HeLa细胞之间的荧光传递随着多西环素增加也相应增强.结论 采用加入不同浓度多西环素的方法,可制备缝隙连接通讯功能强弱不同的细胞模型.  相似文献   

15.
16.
17.
Alzheimer’s Disease (AD) is a neurodegenerative disorder and the most common cause of dementia among the elderly. Efforts have been made to understand the genetic and epigenetic mechanisms involved in the development of this disease. As SORL1 (sortilin-related receptor) and SIRT1 (sirtuin 1) genes have been linked to AD pathogenesis, we aimed to investigate their mRNA expression and promoter DNA methylation in post mortem brain tissues (entorhinal and auditory cortices and hippocampus) from healthy elderly subjects and AD patients. We also evaluated these levels in peripheral blood leukocytes from young, healthy elderly and AD patients, investigating whether there was an effect of age on these profiles. The comparative CT method by Real Time PCR and MALDI-TOF mass spectrometry were used to analyze gene expression and DNA methylation, respectively. SORL1 gene was differently expressed in the peripheral blood leukocytes and might act as a marker of aging in this tissue. Furthermore, we found that SORL1 promoter DNA methylation might act as one of the mechanisms responsible for the differences in expression observed between blood and brain for both healthy elderly and AD patients groups. The impact of these studied genes on AD pathogenesis remains to be better clarified.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号