首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radiographic studies of the deep superior epigastric artery (DSEA) and its connections within the soft tissues of the abdominal wall were performed in 64 fresh cadavers. The patterns of anastomosis between the deep superior epigastric artery and the deep inferior epigastric artery (DIEA) were noted. Type I (29 percent) revealed a single deep superior epigastric artery and deep inferior epigastric artery, type II (57 percent) revealed a double-branched system of each vessel, and type III (14 percent) revealed a system of three or more major branches. In each case, the two systems were united by choke vessels in the segment of muscle above the umbilicus. The supply to the various transverse and vertical skin flaps from the deep superior epigastric artery was defined as a series of captured anatomic territories bounded by choke vessels. The upper transverse and vertical flaps had the best supply, and the TRAM flap had the most tenuous supply. Midline crossover occurs predominantly in the subdermal plexus and on the surface of the rectus sheath. Modifications of the design of the TRAM flap, the case for a delay procedure, the wisdom of including a strip of anterior rectus sheath, and the risks of splitting the muscle with respect to its nerve supply and vascular patterns are discussed on an anatomic basis.  相似文献   

2.
The key to understanding the blood supply of the anterior hemiabdomen is knowledge of the central superficial inferior epigastric artery system and the peripheral contribution of the epigastric, deep and superficial circumflex, and iliac arteries and external oblique perforators. These systems all feed into the subdermal plexus of the anterior abdominal wall. Angiographic confirmation of multiple communications between the superficial inferior epigastric artery and other major sources of abdominal wall blood supply has been obtained. Experience using the superficial inferior epigastric artery flap as a pedicled and microsurgical transfer has been described.  相似文献   

3.
El-Mrakby HH  Milner RH 《Plastic and reconstructive surgery》2002,109(2):539-43; discussion 544-7
The deep inferior epigastric artery provides the main blood supply to the lower abdominal wall. Microdissection of the artery, its main branches, and the perforator vessels was undertaken in 20 cadavers. The artery was found to be associated with two veins in most of the cases (90 percent). The lateral division of the deep inferior epigastric artery and the perforator vessels it gives are more dominant (80 percent of cases) than the medial perforators (20 percent of cases). The lateral perforators were greater in number (80) and more consistent than those that arose from the medial division (28). The musculocutaneous perforators are the most important perforators supplying the anterior abdominal wall. An average of 5.4 large perforators (>0.5 mm in diameter) were dissected in each case. These perforators are mostly contained in the area lying laterally and below the umbilicus, with an average distance of 4 cm from the umbilicus. The musculocutaneous perforators may have a direct or indirect course. Larger perforators (>0.5 mm in diameter) were found to have a direct course through the subcutaneous fat to the skin. Smaller perforators do not reach the skin but terminate at the level of the deep fat layer by branching after piercing the rectus sheath. The direct perforator vessels with their associated veins (microdissection) keep a consistent diameter before dividing at the subdermal level and end by contributing to the subdermal plexus.  相似文献   

4.
As techniques for breast reconstruction with autologous abdominal tissue have evolved, free transverse rectus abdominis myocutaneous flaps have persevered because of their superior reliability and minimal donor-site morbidity compared with muscle-sparing techniques. Further refinements are described in this article to maximize abdominal flap perfusion and ensure primary closure of the rectus fascia. It has been well documented that incorporating both the lateral and medial perforators provides maximal perfusion to all zones of the lower abdominal transverse skin flap. However, dissection and harvest of both sets of perforators requires disruption and/or sacrifice of abdominal wall tissues. The technique presented here was designed to use both the lateral and medial row perforators, and to minimize abdominal wall disruption. Deep inferior epigastric artery medial and lateral row perforators are selected for their diameter, proximity, and transverse orientation to each other. A transverse ellipse of fascia is incised to incorporate both perforators. The fascial incision is then extended inferiorly in a T configuration to allow for adequate exposure and harvest of the vascular pedicle and/or rectus abdominis, and primary closure. Limiting perforator selection to one row of inferior epigastric arteries diminishes perfusion to the abdominal flap. Furthermore, perforator and inferior epigastric artery dissection often results in fascial defects that are not amenable to primary closure. However, maximal abdominal flap perfusion and minimal donor-site morbidity can be achieved with the transverse dual-perforator fascia-sparing free transverse rectus abdominis myocutaneous flap technique and can be performed in most patients.  相似文献   

5.
A series of 240 deep inferior epigastric perforator (DIEP) flaps and 271 free transverse rectus abdominis myocutaneous (TRAM) flaps from two institutions was reviewed to determine the incidence of diffuse venous insufficiency that threatened flap survival and required a microvascular anastomosis to drain the superficial inferior epigastric vein. This problem occurred in five DIEP flaps and did not occur in any of the free TRAM flaps. In each of these cases, the presence of a superficial inferior epigastric vein that was larger than usual was noted. It is therefore suggested that if an unusually large superficial inferior epigastric vein is noted when a DIEP flap is elevated, the vein should be preserved for possible use in flap salvage. Anatomical studies with Microfil injections of the superficial venous system of the DIEP or TRAM flap were also performed in 15 cadaver and 3 abdominoplasty specimens to help determine why venous circulation (and flap survival) in zone IV of the flaps is so variable. Large lateral branches crossing the midline were found in only 18 percent of cases, whereas 45 percent had indirect connections through a deeper network of smaller veins and 36 percent had no demonstrable crossing branches at all. This absence of crossing branches in many patients may explain why survival of the zone IV portion of such flaps is so variable and unpredictable.  相似文献   

6.
The purpose of this study was to document the extent of the arteries supplying the external and internal oblique muscles and the connections among the vascular territories. Ten adult human cadavers underwent whole-body arterial perfusion (200 ml/kg) with a mixture of lead oxide, gelatin, and water, through the carotid artery. The external and internal oblique muscles were dissected and subjected to radiography. The vasculature of each muscle was analyzed by using the paper template technique. The areas of the vascular territories of the individual intercostal arteries within the external oblique muscle varied from 9 to 22 percent. The area of the vascular territory of the muscular branch of the deep circumflex iliac artery was 5 to 18 percent. The ascending branch of the deep circumflex iliac artery supplied a mean of 35.7 percent of the vascular territory of the internal oblique muscle. The lower six posterior intercostal arteries supplied a mean of 48.5 percent. The lateral branches of the deep inferior epigastric artery supplied a mean of 15.8 percent. This information provides the basis for the design of external and internal oblique muscle flaps for functional muscle transfer.  相似文献   

7.
N R Harris  M S Webb  J W May 《Plastic and reconstructive surgery》1992,90(4):553-8; discussion 559-61
An intraoperative study was done to establish the functional and quantitative properties of the blood supply to the TRAM flap through the assessment and manipulation of blood flow through the deep epigastric arterial system. Seventeen patients undergoing unilateral postmastectomy breast reconstruction with lower transverse rectus abdominis myocutaneous (TRAM) flaps were studied. The study is divided into two parts: (1) ultrasonic measurement of blood flow in the deep inferior epigastric artery (DIEA), and (2) direct measurement of blood pressure in the deep epigastric arterial system, after division of the deep inferior epigastric artery. With occlusion of the superior epigastric artery at the level of the upper edge of the skin flap, 71 percent of the patients had a decrease in the blood flow through the deep inferior epigastric artery, with an average decrease of 23 percent. This implies that the area of watershed perfusion in the lower TRAM flap is superior to the umbilicus, and therefore, survival of all lower TRAM flap tissues requires reversal in the normal direction of arterial flow to the flap. The blood pressure in the proximal stump of the deep inferior epigastric arterial system averaged 46 percent of the mean systemic blood pressure. Occlusion of the medial and lateral thirds of the isolated rectus muscle decreased the mean arterial blood pressure in the flap an average of 19 percent in 80 percent of the individuals studied. These data support the technique of harvesting the entire rectus muscle, avoiding muscle-splitting maneuvers that may compromise axial blood flow.  相似文献   

8.
Chevray PM 《Plastic and reconstructive surgery》2004,114(5):1077-83; discussion 1084-5
Breast reconstruction using the lower abdominal free superficial inferior epigastric artery (SIEA) flap has the potential to virtually eliminate abdominal donor-site morbidity because the rectus abdominis fascia and muscle are not incised or excised. However, despite its advantages, the free SIEA flap for breast reconstruction is rarely used. A prospective study was conducted of the reliability and outcomes of the use of SIEA flaps for breast reconstruction compared with transverse rectus abdominis musculocutaneous (TRAM) and deep inferior epigastric perforator (DIEP) flaps. Breast reconstruction with an SIEA flap was attempted in 47 consecutive free autologous tissue breast reconstructions between August of 2001 and November of 2002. The average patient age was 49 years, and the average body mass index was 27 kg/m. The SIEA flap was used in 14 (30 percent) of these breast reconstructions in 12 patients. An SIEA flap was not used in the remaining 33 cases because the SIEA was absent or was deemed too small. The mean superficial inferior epigastric vessel pedicle length was approximately 7 cm. The internal mammary vessels were used as recipients in all SIEA flap cases so that the flap could be positioned sufficiently medially on the chest wall. The average hospital stay was significantly shorter for patients who underwent unilateral breast reconstruction with SIEA flaps than it was for those who underwent reconstruction with TRAM or DIEP flaps. Of the 47 free flaps, one SIEA flap was lost because of arterial thrombosis. Medium-size and large breasts were reconstructed with hemi-lower abdominal SIEA flaps, with aesthetic results similar to those obtained with TRAM and DIEP flaps. The free SIEA flap is an attractive option for autologous tissue breast reconstruction. Harvest of this flap does not injure the anterior rectus fascia or underlying rectus abdominis muscle. This can potentially eliminate abdominal donor-site complications such as bulge and hernia formation, and decrease weakness, discomfort, and hospital stay compared with TRAM and DIEP flaps. The disadvantages of an SIEA flap are a smaller pedicle diameter and shorter pedicle length than TRAM and DIEP flaps and the absence or inadequacy of an arterial pedicle in most patients. Nevertheless, in selected patients, the SIEA flap offers advantages over the TRAM and DIEP flaps for breast reconstruction.  相似文献   

9.
In this study, the vascular architecture of rectus abdominis free flaps nourished by deep inferior epigastric vessels was investigated using an ex vivo intraoperative angiogram. Oblique rectus abdominis free flaps were elevated and isolated from the donor site. In 11 patients, the vascular architecture of these flaps was analyzed before the flap was thinned. Radiographic study identified an average of 2.1 large deep inferior epigastric arterial perforators in each flap. In nine of the 11 flaps, the axial artery was visible. In four flaps, the axial artery originated from the perforator of the lateral branch of the deep inferior epigastric artery; in five others, it originated from the medial branch. In each flap, the angle of the axial perforator from its anterior rectus sheath in the vertical plane was measured; its mean was 50.6 degrees. All flaps survived, although three showed partial necrosis in the distal portions. In two of these three flaps, the axial artery was not visible in the angiograms, and the third revealed a one-sided distribution of axial flap arteries. Using ex vivo intraoperative angiography, the architecture of the individual flap, its axial perforator, and its connecting axial flap vessel could be investigated. This information can help the surgeon safely thin and separate the flap.  相似文献   

10.
Clinical applications of the extended deep inferior epigastric flap   总被引:1,自引:0,他引:1  
The extended deep inferior epigastric flap, described by Taylor et al. in 1983, consists of the lower portion of the rectus abdominis muscle and a superolateral fasciocutaneous extension based on the periumbilical perforators. We have used this flap four times to close large defects of the abdomen, groin, and thigh and twice as a free flap to close wounds of the head and leg. There were no ischemic complications, and there was uncomplicated wound healing in the recipient and in the donor wounds. We recommend this highly versatile and reliable flap as one to be considered early in planning the closure of large wounds.  相似文献   

11.
The delay phenomenon: the story unfolds   总被引:5,自引:0,他引:5  
Our previous studies have shown that when a flap is delayed, there is dilation of existing vessels within the flap not ingrowth of new vessels. The maximal anatomic effect on the arterial tree occurs at the level of the reduced-caliber "choke" anastomotic vessels that link adjacent vascular territories. To further investigate the sequence of anatomic changes that occurs during the delay phenomenon, a large series of 200 rabbits and 17 dogs underwent a flap delay procedure in either skin or muscle and the tissues were examined at postoperative periods between 1 hour and 1 year by using well-established fluorescein, angiographic, light microscopic, immunohistochemical, and electron microscopic techniques. These data in the rabbit skin consistently demonstrated an initial period of vasoconstriction that resolved within 3 hours postoperatively and was followed by an active and progressive dilation of choke vessels that was most dramatic between 48 and 72 hours. In vivo intravenous fluorescein dye testing revealed an interesting parallel in that there was a temporary barrier to the flow of fluorescein that occurred at the level of the choke vessels immediately after the flap was raised and that this temporary barrier-continued to impede the flow toward the flap tip in rabbits where flaps had been delayed for periods up to 72 hours. Thereafter, there was no obstruction to the flow of fluorescein along the flap. During this early delay period of 3 days, light microscopy revealed a decrease in vessel wall thickness associated with an increase in lumen diameter. Over the next 4 days, the luminal diameter continued to dilate to a lesser extent and the vessel wall thickened. Immunohistochemical analysis showed increased cell division, maximal between 24 and 72 hours, in all layers of the choke vessel wall. During this same postoperative interval, transmission electron microscopy revealed phenotypic changes in smooth muscle cells from contractile to synthetic cells. Hypertrophy of the smooth muscle cells was also observed. The vascular endothelium, which initially showed evidence of denudation, was restored to a healthy intact appearance within the first week after delay. When followed for longer periods, long-term studies of the delayed flap of up to 1 year demonstrated dramatically a permanent dilation of the choke vessel lumen and a thickening of the choke vessel wall. In canine studies, one rectus abdominis muscle was delayed by ligating the deep inferior epigastric artery. The time sequence of choke vessel dilation, studied by sequential angiograms in vivo, was comparable to that of the rabbit skin model. To ascertain the permanence and irreversibility of this dilation, the normal circulation of the delayed rectus abdominis muscle was restored by reanastomosing the deep inferior epigastric artery. Even after a recovery period of up to 3 months, the choke vessels remained dilated and tortuous instead of reverting to their original narrow diameters. From this work, it is suggested that the choke vessel dilation seen in the delay period is a permanent and irreversible event. It is an active process associated with both an increase (hyperplasia) and an enlargement (hypertrophy) of the cells in all layers of the choke artery wall and a resultant increase in caliber of these vessels. The time sequence for delay appears to be similar in different species and in different tissues, suggesting the possibility of a universal process for delay.  相似文献   

12.
Sano K  Hallock GG  Rice DC 《Plastic and reconstructive surgery》2002,109(3):1052-7; discussion 1058-9
The use of some form of delay maneuver for "high-risk" patients before transfer of the superior pedicled lower transverse rectus abdominis musculocutaneous (TRAM) flap for breast reconstruction has augmented the rate of success in both the experimental and clinical arenas. A common method of vascular delay has been the bilateral division of both the superficial inferior epigastric and deep inferior epigastric vessels. Whether all of these must be divided to adequately effect the delay is unknown. For that matter, the relative importance of the superficial versus the deep vascular systems is unclear. To investigate this uncertainty, a delay was attempted in 61 Sprague-Dawley rats by division of either the superficial inferior epigastric or deep cranial epigastric vessels (the latter is the homologue to the human deep inferior epigastric) in unilateral or bilateral fashion. Division of the contralateral superficial inferior epigastric vessel resulted in significantly greater TRAM flap survival than either ipsilateral or bilateral superficial inferior epigastric vessel division (p = 0.0034 or p = 0.0093, respectively). Division of the ipsilateral or bilateral deep cranial epigastric vessel resulted in significantly greater flap survival than just contralateral deep cranial epigastric vessel division (p = 0.0034 or p = 0.006, respectively). No significant difference was observed between the group having contralateral superficial inferior epigastric or groups with ipsilateral deep cranial epigastric division, implying that either alone would be efficacious to achieve the desired delay effect. This would allow the other vascular system to be retained intact for later potential salvage maneuvers as needed.  相似文献   

13.
A significant clinical problem in reconstructive surgery is partial loss of a pedicled flap. To resolve this problem, various methods of vascular augmentation have been developed; "supercharging" is one of those techniques. A new rat flap model was developed for investigation of the supercharging procedure, and the efficacy of the arterial supercharging method was examined. The purpose of this study was to investigate how an arterial supercharging procedure could generate large flap survival areas with different supercharging positions in rats. On the basis of the vascular anatomical features of rats, a circumferential skin flap from the lower abdomen to the back, measuring 4 x 12 cm, was marked. The flap was divided along the dorsal midline. Forty rats were divided into four experimental groups, as follows: group 1 (control), flaps based only on the deep circumflex iliac artery and vein; group 2, flaps supercharged with the ipsilateral superficial inferior epigastric artery; group 3, flaps supercharged with the contralateral superficial inferior epigastric artery; group 4, flaps supercharged with the contralateral deep circumflex iliac artery. On the fourth postoperative day, the flaps were evaluated with measurements of necrosis and survival areas. Microfil (Flow Tech, Inc., Carver, Mass.) was then injected manually throughout the body, and the vascular changes produced by supercharging were angiographically evaluated. Compared with group 1 (control), the flap survival areas were significantly greater in distally supercharged flaps in groups 3 and 4 (mean flap survival, 91.2 +/- 5.2 percent and 90.5 +/- 10.6 percent, respectively; p < 0.001) and in proximally supercharged flaps in group 2 (45.9 +/- 4.1 percent, p < 0.05). Angiographic assessment of the flaps that survived completely revealed marked dilation of the choke veins among the territories and reorientation of dilated veins along the axes of the flaps. This study suggests that distal arterial supercharging (contralateral superficial inferior epigastric artery or contralateral deep circumflex iliac artery) is more effective than proximal arterial supercharging (ipsilateral superficial inferior epigastric artery) in increasing flap survival. Although the rat skin flap may not be analogous to human flaps, distal arterial supercharging might have useful therapeutic potential in increasing flap survival in clinical practice.  相似文献   

14.
The authors retrospectively reviewed the computerized records of 71 women undergoing 80 deep inferior epigastric perforator (DIEP) flap reconstructions after mastectomy over a 1-year period. There were 33 normal, 26 overweight, and 12 obese patients. No statistically significant difference in flap complications was found between groups. Overall fat necrosis rates were 11.4 percent for the normal-weight patients, 6.7 percent for the overweight patients, and 6.7 percent for the obese patients. Postoperative hospital time was similar for all groups. The occurrence of abdominal wall fascial laxity was uncommon and similar for all groups. Large (>900 g) reconstructions were completed without prohibitive complications in the reconstruction flap. The DIEP flap represents a significant advance in autologous breast tissue reconstruction. Although concerns regarding fat necrosis rates in DIEP flaps have been voiced, the authors did not see an increasing rate of fat necrosis in their overweight and obese patients, and their overall rate of fat necrosis is comparable to rates reported for free transverse rectus abdominis myocutaneous (TRAM) flaps. Also, increasing body mass index did not seem to affect the rate of delayed complications of the abdominal wall, such as abdominal wall hernia or bulging. Although it was not statistically significant, the authors did observe a trend toward increased wound-healing complications with increasing body mass index. Their data also support the claim that the complete sparing of the rectus abdominis muscles afforded by the DIEP flap avoids abdominal wall fascial bulging or defects often seen in obese TRAM reconstruction patients. Because flap and wound complication rates are similar or superior to those of other autologous tissue reconstruction techniques and the occurrence of abdominal wall defects is all but eliminated, the DIEP flap likely represents the preferred autologous breast reconstruction technique for overweight and obese patients.  相似文献   

15.
A porcine rectus abdominis musculocutaneous (TRAM) flap model was designed and validated in nine pigs. This TRAM flap was based on the deep inferior epigastric (DIE) vessels with an 8 x 18 cm transverse skin paddle at the superior end of the rectus abdominis muscle. The model was subsequently used to test our hypothesis of surgical augmentation of flap viability by vascular territory expansion. Specifically, we observed that ligation of the superior epigastric (SE) vessels at 4, 7, 14, and 28 days (N = 6 to 8) prior to raising the TRAM flaps significantly increased (p less than 0.05) the length and area of the viable skin in the transverse skin paddles of the treatment flaps compared with the contralateral shammanipulated control flaps. This significant increase in skin viability was seen to be accompanied by a significant increase (p less than 0.05) in skin and muscle capillary blood flow in the treatment TRAM flaps compared with the controls (N = 9). The mechanism of vascular territory expansion is unclear. We postulate that hypoxia resulting from the ligation of the superior epigastric vessels prior to the flap surgery may play a role in the triggering of the deep inferior epigastric artery to take over some of the territory previously perfused by the superior epigastric artery. This would then increase the skin and muscle capillary blood flow in the transverse paddle when the TRAM flap was raised on the deep inferior epigastric vascular pedicle.  相似文献   

16.
The recycling of a skin territory as part of a musculocutaneous flap despite prior division of existing musculocutaneous perforators or vice versa within an axial cutaneous flap using skin from a previous musculocutaneous flap may sometimes be done safely if an adequate time period has been allotted to permit sufficient neovascularization from adjacent tissues. In order to test this clinically observed phenomenon, a musculocutaneous flap model based on perforators from the rat rectus abdominis muscle was developed and observed to have complete reliability. Groups of five Sprague-Dawley rats each were sequentially utilized to prove that by a single week following creation of a rectus abdominis musculocutaneous flap adequate peripheral neovascularization would evolve to permit total viability of secondary axial epigastric cutaneous flaps incorporating the same skin that initially was the cutaneous portion of the muscle flap. The converse was also confirmed possible, again using sequential groups of five rats each, in that by 2 weeks the skin of an initial abdominal cutaneous flap could instead be safely transposed and nourished as part of a rectus abdominis musculocutaneous flap. The proposition concerning the reliable reuse of identical skin territories as part of disparate metachronous flap configurations appears to be valid.  相似文献   

17.
Scheufler O  Exner K  Andresen R 《Plastic and reconstructive surgery》2004,113(1):141-52; discussion 153-5
Near-infrared reflection spectroscopy, used experimentally for investigation of tissue hemoglobin content and oxygenation in various flaps, was tested in the pedicled transverse rectus abdominis musculocutaneous (TRAM) flap, chosen as a simple clinical model because of its well-known vascular anatomy and clinical relevance. The study intended to answer the following questions: Does the near-infrared reflection spectroscopy system used in this study measure tissue hemoglobin content and oxygenation in the superficial skin layers only, as proposed by the manufacturer? Is near-infrared reflection spectroscopy able to detect differences of tissue hemoglobin content and oxygenation in distinct zones of the TRAM flap skin before, early, and late after surgery? Does tissue hemoglobin content and oxygenation correspond to blood flow in the supplying superior epigastric artery and to clinical signs of TRAM flap perfusion and viability? In 11 patients, tissue hemoglobin content and oxygenation in the lower abdomen/TRAM flap, mastectomy skin flap, and contralateral breast were measured by a new near-infrared reflection spectroscopy system preoperatively, early postoperatively, and late postoperatively. Simultaneously, systolic peak flow in the ipsilateral superior epigastric artery was obtained by color-coded duplex sonography. Routine clinical monitoring was performed throughout the early postoperative period. Tissue hemoglobin content and oxygenation in the lower abdomen, mastectomy skin flap, and contralateral breast were similar before surgery but varied considerably between different patients. There were no significant differences among preoperative, early postoperative, and late postoperative values of tissue hemoglobin content and oxygenation in the mastectomy skin flap and contralateral breast. However, near-infrared reflection spectroscopy measurements of the TRAM flap revealed significant differences between preoperative and early postoperative values of tissue hemoglobin content and oxygenation and among zones I, II, and III early after surgery. Tissue hemoglobin content in the TRAM flap skin increased and oxygenation decreased early after surgery. Near-infrared reflection spectroscopy values corresponded to clinical signs of venous congestion predominantly in zone III. Late postoperative return of hemoglobin content and oxygenation in the TRAM flap toward preoperative values can be attributed to improved venous return by reversed flow across regurgitant valves and development of collateral circulation. Finally, there was a significant increase of systolic peak flow in the ipsilateral superior epigastric artery early after surgery. This could be related to the opening of small-caliber choke arteries between the superior and deep inferior epigastric arteries following ligation of the dominant deep inferior epigastric artery and TRAM flap transfer to the chest. Systolic peak flow returned to preoperative values late after surgery. The near-infrared reflection spectroscopy system used in this study appeared to measure hemoglobin content and oxygenation in the superficial skin layers only. Near-infrared reflection spectroscopy was able to detect differences of tissue hemoglobin content and oxygenation in the TRAM flap between preoperative and postoperative measurements and between distinct zones of the TRAM flap early postoperatively. Postoperative changes in near-infrared reflection spectroscopy values corresponded to clinical observations and blood flow in the superior epigastric artery measured by color-coded duplex sonography. Further experience is needed before near-infrared reflection spectroscopy can be advocated for routine clinical flap monitoring.  相似文献   

18.
A 10-year retrospective review of 758 DIEP flaps for breast reconstruction   总被引:9,自引:0,他引:9  
This study examined 758 deep inferior epigastric perforator flaps for breast reconstruction, with respect to risk factors and associated complications. Risk factors that demonstrated significant association with any breast or abdominal complication included smoking (p = 0.0000), postreconstruction radiotherapy (p = 0.0000), and hypertension (p = 0.0370). Ninety-eight flaps (12.9 percent) developed fat necrosis. Associated risk factors were smoking (p = 0.0226) and postreconstruction radiotherapy (p = 0.0000). Interestingly, as the number of perforators increased, so did the incidence of fat necrosis. There were only 19 cases (2.5 percent) of partial flap loss and four cases (0.5 percent) of total flap loss. Patients with 45 flaps (5.9 percent) were returned to the operating room before the second-stage procedure. Patients with 29 flaps (3.8 percent) were returned to the operating room because of venous congestion. Venous congestion and any complication were observed to be statistically unrelated to the number of venous anastomoses. Overall, postoperative abdominal hernia or bulge occurred after only five reconstructions (0.7 percent). Complication rates in this large series were comparable to those in retrospective reviews of pedicle and free transverse rectus abdominis musculocutaneous flaps. Previous studies of the free transverse rectus abdominis musculocutaneous flap described breast complication rates ranging from 8 to 13 percent and abdominal complication rates ranging from 0 to 82 percent. It was noted that, with experience in microsurgical techniques and perforator selection, the deep inferior epigastric perforator flap offers distinct advantages to patients, in terms of decreased donor-site morbidity and shorter recovery periods. Mastery of this flap provides reconstructive surgeons with more extensive options for the treatment of postmastectomy patients.  相似文献   

19.
Craniofacial contour deformities are difficult to reconstruct. This article summarizes the authors' use of deep inferior epigastric perforator dermal-fat or adiposal flaps in eight patients with such deformities. Of these patients, three had traumatic craniofacial or facial deformities, one had congenital craniofacial deformity, two had hemifacial atrophy (one because of radiation), one had hemifacial microsomia, and one had localized frontonasal lipodystrophy. Stable restoration of the facial contour was achieved in all eight patients. The advantages of this flap are numerous. It has minimal donor-site morbidity, because the rectus abdominis muscle is preserved as a whole, and it accommodates pregnancy in female patients. Simultaneous elevation of this flap during preparation of the recipient site makes it possible to complete surgery in a shorter time than with the scapular flap. Furthermore, a considerable amount of the superficial or deep fatty layer can be removed primarily, making a bulky flap into a thinner one. This flap also allows the use of a large transverse abdominal ellipse of skin, fat, and Scarpa's fascia with abdominoplasty closure. Conversely, it requires a technically difficult dissection of the muscle perforator and skin grafting of donor defects in patients with a large dermal-fat flap. Also, additional minor operations may be necessary to reduce fat volume around the perforator. Ultimately, the deep inferior epigastric perforator adiposal flap seems to be suitable for craniofacial contouring surgery. It is especially indicated for use in children and female patients who are expecting to have children.  相似文献   

20.
The authors present their experience with a previously described but infrequently used variation of the rectus abdominis myocutaneous flap. Skin paddles angled obliquely from the line of the rectus abdominis and toward the rib cage were successfully carried on periumbilical perforators from the inferior epigastric system. Skin paddle dimensions ranged from 6.5 to 12 cm in width and from 10 to 27 cm in length in 14 consecutive patients. In six of the 14 patients, the flap was used intraabdominally to obliterate radiated pelvic defects and to close radiated vaginal defects. Five flaps were placed externally to repair radiated wounds of the perineum, thigh, and trunk, and the remaining three cases were performed as free tissue transfers. One cadaver injection study was performed to redemonstrate the preferential flow of fluid in a superior-oblique direction from periumbilical perforators. Termed the oblique rectus abdominis musculocutaneous ("ORAM") flap, this flap variation has significant advantages in terms of ease of dissection and versatility over its flap cousins the vertical rectus abdominis musculocutaneous flap and the transverse rectus abdominis musculocutaneous flap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号