首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An str gene cluster containing at least four genes (strR, strA, strB, and strC) involved in streptomycin biosynthesis or streptomycin resistance or both was self-cloned in Streptomyces griseus by using plasmid pOA154. The strA gene was verified to encode streptomycin 6-phosphotransferase, a streptomycin resistance factor in S. griseus, by examining the gene product expressed in Escherichia coli. The other three genes were determined by complementation tests with streptomycin-nonproducing mutants whose biochemical lesions were clearly identified. strR complemented streptomycin-sensitive mutant SM196 which exhibited impaired activity of both streptomycin 6-phosphotransferase and amidinotransferase (one of the streptomycin biosynthetic enzymes) due to a regulatory mutation; strB complemented strain SD141, which was specifically deficient in amidinotransferase; and strC complemented strain SD245, which was deficient in linkage between streptidine 6-phosphate and dihydrostreptose. By deletion analysis of plasmids with appropriate restriction endonucleases, the order of the four genes was determined to be strR-strA-strB-strC. Transformation of S. griseus with plasmids carrying both strR and strB genes enhanced amidinotransferase activity in the transformed cells. Based on the gene dosage effect and the biological characteristics of the mutants complemented by strR and strB, it was concluded that strB encodes amidinotransferase and strR encodes a positive effector required for the full expression of strA and strB genes. Furthermore, it was found that amplification of a specific 0.7-kilobase region of the cloned DNA on a plasmid inhibited streptomycin biosynthesis of the transformants. This DNA region might contain a regulatory apparatus that participates in the control of streptomycin biosynthesis.  相似文献   

2.
Summary The cluster of streptomycin (SM) production genes in Streptomyces griseus was further analysed by determining the nucleotide sequence of genes strFGHIK. The products of the strF and/or strG genes may be involved in the formation of N-methyl-l-glucosamine, and that of the strH gene in the first glycosylation step condensing streptidine-6-phosphate and dihydrostreptose. The putative Strl protein showed strong similarity to the amino-terminal NAD(P)-binding sites of many dehydrogenases, especially of the glyceraldehyde-3-phosphate dehydrogenases. The product of the strK gene strongly resembles the alkaline phosphatase of Escherichia coli. It was shown that S. griseus excretes an enzyme that specifically cleaves both SM-6-phosphate and — more slowly — SM-3-phosphate during the production phase for SM. The identity of this enzyme with the StrK protein was demonstrated by expression of the strK gene in Streptomyces lividans 66. Further evidence for an involvement of these genes in SM biosynthesis came from the fact that genes homologous to them were found in the equivalent gene cluster of the hydroxy-SM producer Streptomyces glaucescens; these, however, were in part differently organized. The ca. 5 kb DNA segment downstream of strI in S. griseus which contains the strK gene was found to be located in inverse orientation between the homologues of the aphD and strR genes in S. glaucescens.  相似文献   

3.
4.
5.
Accumulating data have shown that the metabolites with a -butyrolactone ring functions as an autoregulatory factor or a microbial hormone for the expression of various phenotypes not only in a variety ofStreptomyces spp. but also in the distantly related bacteria. A-factor, as a representative of this type of autoregulators, triggers streptomycin biosynthesis and cellular differentiation inStreptomyces griseus. A model for the A-factor regulatory cascade on the basis of recent work is as follows. At an early step in the A-factor regulatory relay, the positive A-factor signal is first received by an A-factor receptor protein that is comparable in every aspect to eukaryotic hormone receptors, and then, via one or more regulatory steps, transmitted to an A-factor-responsive protein that binds to the upstream activation sequence of thestrR gene, a regulatory gene in the streptomycin biosynthetic gene cluster. The StrR protein thus induced appears to activate the other streptomycin biosynthetic genes. This review summarizes the characteristics of A-factor as a microbial hormone and the A-factor regulatory relay leading to streptomycin production.  相似文献   

6.
Summary A 7.2 kbBglII restriction fragment, which increases the production of several extracellular enzymes, including alkaline phosphatase, amylase, protease, lipase and -galactosidase, was cloned inStreptomyces lividans from the DNA ofS. griseus ATCC 10137. This gene (namedsaf) showed a positive gene dosage effect on production of extracellular enzymes. When thesaf gene was introduced into cells in high copy numbers it delayed the formation of pigments and spores inS. lividans and also retarded actinorhodin production inStreptomyces coelicolor. Thesaf gene hybridized with specific bands in the DNA of severalStreptomyces strains tested. A 1 kb fragment containing thesaf gene was sequenced and contains an open reading frame (ORF) of 306 nucleotides which encodes a polypeptide of Mr 10 500. This ORF is contained within a fragment of 432 by which retained activity inStreptomyces. A fragment with promoter activity is present upstream of thesaf reading frame. The predicted Saf polypeptide has a strong positive charge, and does not show a typical amino acid composition for a membrane protein, and contains a DNA-binding domain similar to those found in several regulatory proteins.  相似文献   

7.
Summary A gene conferring high-level resistance to tylosin in Streptomyces lividans and Streptomyces griseofuscus was cloned from a tylosin-producing strain of Streptomyces fradiae. The tylosin-resistance (Tylr) gene (tlrA) was isolated on five overlapping DNA fragments which contained a common 2.6 Kb KpnI fragment. The KpnI fragment contained all of the information required for the expression of the Tylr phenotype in S. lividans and S. griseofuscus. Southern hybridization indicated that the sequence conferring tylosin resistance was present on the same 5 kb SalI fragment in genomic DNA from S. fradiae and several tylosin-sensitive (Tyls) mutants. The cloned tlrA gene failed to restore tylosin resistance in two Tyls mutants derived by protoplast formation and regeneration, and it restored partial resistance in a Tyls mutant obtained by N-methyl-N-nitro-N-nitrosoguanidine (MNNG) mutagenesis. The tlrA gene conferred resistance to tylosin, carbomycin, niddamycin, vernamycin-B and, to some degree, lincomycin in S. griseofuscus, but it had no effect on sensitivity to streptomycin or spectinomycin, suggesting that the cloned gene is an MLS (macrolide, lincosamide, streptogramin-B)-resistance gene. Twenty-eight kb of S. fradiae DNA surrounding the tlrA gene was isolated from a genomic library in bacteriophage Charon 4. Introduction of these DNA sequence into S. fradiae mutants blocked at different steps in tylosin biosynthesis failed to restore tylosin production, suggesting that the cloned Tylr gene is not closely linked to tylosin biosynthetic genes.  相似文献   

8.
We have analyzed an anthracycline biosynthesis gene cluster fromStreptomyces nogalater. Based on sequence analysis, a contiguous region of 11 kb is deduced to include genes for the early steps in anthracycline biosynthesis, a regulatory gene (snoA) promoting the expression of the biosynthetic genes, and at least one gene whose product might have a role in modification of the glycoside moiety. The three ORFs encoding a minimal polyketide synthase (PKS) are separated from the regulatory gene (snoA) by a comparatively AT-rich region (GC content 60%). Subfragments of the DNA region were transferred toStreptomyces galilaeus mutants blocked in aclacinomycin biosynthesis, and to a regulatory mutant ofS. nogalater. TheS. galilaeus mutants carrying theS. nogalater minimal PKS genes produced auramycinone glycosides, demonstrating replacement of the starter unit for polyketide biosynthesis. The product ofsnoA seems to be needed for expression of at least the genes for the minimal PKS.  相似文献   

9.
Summary Plant cells in photoheterotrophic culture respond to streptomycin by bleaching and retarded growth but no cell death. A new genetic marker for plant cell transformation has been developed that is based on the expression of the enzyme streptomycin phosphotransferase (SPT), and confers the ability to form green colonies on a selective medium. Coding sequences of SPT from the bacterial transposon Tn5 were placed under the control of gene expression signals derived from the Agrobacterium Ti plasmid Ach5. The 5 end of the SPT gene has been replaced with the promoter region of the gene coding for the first enzyme of agropine biosynthesis, the 3 end with that of the enzyme octopine synthase. The chimeric SPT gene has been linked to a selectable kanamycin resistance gene, and introduced into Nicotiana tabacum and Nicotiana plumbaginifolia by selection for the linked kanamycin resistance marker. Streptomycin resistance was expressed in some but not all of the kanamycin-resistant lines and was transmitted to the seed progeny as a dominant nuclear trait.  相似文献   

10.
11.
Streptomycin-resistant mutations were induced in Solanum melongena by exposing seeds to ethyl methane sulphonate (EMS). Seed mutagenesis resulted in a high frequency of chlorophyll-deficient mutations and a low frequency of resistant shoots, both of which retained their resistance on subsequent testing. Reciprocal crosses between streptomycin-resistant and -sensitive plants showed a non-Mendelian transmission of the resistance trait. Streptomycin resistance is the first selectable and maternally inherited organelle marker described in brinjal.  相似文献   

12.
Summary The isolation of mutants of Streptomyces rimosus which were blocked in oxytetracycline (OTC) production was described previously. The genes for the early steps of antibiotic biosynthesis mapped together. Genomic DNA fragments of S. rimosus which conferred resistance to OTC and complemented all of these non-producing mutants have been cloned. The cloned DNA is physically linked within approximately 30 kb of the genome of S. rimosus. The gene cluster is flanked at each end by a resistance gene each of which, independently, can confer resistance to the antibiotic. In OTC-sensitive strains of S. rimosus, the entire gene cluster including both resistance genes has been deleted. Complementation of blocked mutants by cloned DNA fragments in multi-copy vectors was often masked by a secondary effect of switching off antibiotic productions in strains othersise competent to produce OTC. This adverse effect on OTC production was not observed with recombinants using low copy-number vectors.  相似文献   

13.
14.
Summary Previous studies have shown that a chimeric streptomycin phosphotransferase (SPT) gene can function as a dominant marker for plant cell transformation. The SPT marker previously described by Jones and co-workers has a limited value since it conferred a useful level of resistance only to a fraction (10%) of Nicotiana plumbaginifolia transgenic lines. Expression of resistance was species specific: no such resistant transformants were found in N. tabacum. In this paper we describe an improved SPT construct that utilizes a mutant Tn5 SPT gene. The mutant gene, SPT *, encodes a protein with a two amino acid deletion close to its COOH-terminus. In N. tabacum cell culture the efficiency of transformation with the improved streptomycin resistance marker was comparable to kanamycin resistance. When the chimeric SPT * gene was introduced linked to a kanamycin resistance gene, streptomycin resistance was expressed in most of the transgenic N. tabacum lines.  相似文献   

15.
Streptomyces griseus was cultured in three different bioreactors in a medium containing chitin flakes. When a conventional bioreactor stirred by two sets of Rushton impellers and operated at high speed was used, the yield of streptomycin (3.1 mg/l) was the highest observed and occurred at approximately 500 h. Cultivation of S. griseus in a bioreactor stirred at low speed by a U-shaped paddle resulted in a lower yield of streptomycin (1.8 mg/l) but this was achieved in a shorter period of time (400 h). Increasing the concentration of chitin from 5% to 10% w/v had no significant effect on either of these two parameters. The use of a novel vertical basket bioreactor in which the chitin flakes were contained within a wire mesh basket and were gently fluidised by air, enabled comparatively high yields of streptomycin (2.8 mg/l) in the relatively short time of 300 h.  相似文献   

16.
In a previous phylogenetic study of the genus Streptomyces using the rpoB gene, N531, which stands for an aspargine residue in position 531 of RpoB instead of serine (S531), known to be associated with natural rifampin resistance in several organisms, was also observed in the RpoB of several Streptomyces species. To determine whether N531 is associated with the rifampin resistance of Streptomyces strains, we analyzed the rifampin minimum inhibitory concentrations (MICs) of 11 strains of the N531 RpoB type (putative rifampin resistant strains) and of 12 strains of the S531 RpoB type. (putative rifampin susceptible strains). In general, the N531 RpoB types showed higher MIC levels (16-128 microg/ml) than the S531 RpoB types (0-8 microg/ml). To determine the isolation frequencies of N531 RpoB types versus rifampin concentration, we applied screening methods involving different rifampin concentrations (0, 20 and 100 microg/ml) to Korean soils. Higher isolation frequencies of the N531 RpoB types were observed at the higher rifampin concentrations. In addition, during the course of this study we developed an allele specific PCR method to detect rifampin resistant Streptomyces strains. Our results strongly suggested that N531 might be involved in a major mechanism of natural rifampin resistance in strains of the genus Streptomyces.  相似文献   

17.
Gene clusters for the biosynthesis of kanamycin (Km) and gentamicin (Gm) were isolated from the genomic libraries of Streptomyces kanamyceticus and Micromonospora echinospora, respectively. The sequencing of the 47 kb-region of S. kanamyceticus genomic DNA revealed 40 putative open reading frames (ORFs) encoding Km biosynthetic proteins, regulatory proteins, and resistance and transport proteins. Similarly, the sequencing of 32.6 kb genomic DNA of M. echinospora revealed a Gm biosynthetic gene cluster flanked by resistant genes. Biosynthetic pathways for the formation of Km were proposed by the comparative study of biosynthetic genes. Out of 12 putative Km biosynthetic genes, kanA was expressed in Escherichia coli and determined its function as a 2-deoxy-scyllo-inosose synthase. Furthermore, the acetylations of aminoglycoside-aminocyclitols (AmAcs) by Km acetyltransferase (KanM) were also demonstrated. The acetylated derivatives completely lost their antibacterial activities against Bacillus subtilis. The comparative genetic studies of Gm, Km, tobramycin (Tm), and butirosin (Bn) reveal their similar biosynthetic routes and provide a framework for the further biosynthetic studies.  相似文献   

18.
A series of large chromosomal deletions in Streptomyces hygroscopicus 10-22 were aligned on the physical map of the wild-type strain and the mutants were assessed for their ability to produce the aminocyclitol antibiotic 5102-I (jinggangmycin). Twenty-eight mutants were blocked for jinggangmycin production and all of them were found to lack a 300 kb AseI-F fragment of the wild-type chromosome. An ordered cosmid library of the 300 kb AseI-F fragment was made and one of the cosmids conferred jinggangmycin productivity to Streptomyces lividans ZX1. Three of the overlapping cosmids (18G7, 5H3 and 9A2) also hybridized to the valA gene of the validamycin pathway from S. hygroscopicus 5008 as a probe. This gene resembles acbC from Actinoplanes sp. 50/110, which encodes a C7-cyclitol synthase that catalyses the transformation of sedoheptulose 7-phosphate into 2-5-epi-valiolone for acarbose biosynthesis. The valA/acbC-homolog (orf1) of S. hygroscopicus 10-22 was shown to be essential for jinggangmycin biosynthesis as an engineered mutant with a specific in-frame deletion removing a 609 bp sequence internal to orf1 completely abolished jinggangmycin production and the corresponding knock-out mutant (JXH4) could be complemented for jinggangmycin production by the introduction of an orf1-containing construct. Concurrently, the identities of the genes common to S. hygroscopicus strains 10-22 and 5008 prompted a comparison of the chemical structures of jinggangmycin and validamycin, which led to a clear demonstration that they are identical.The first two authors contributed equally to this study.  相似文献   

19.
The bal, cep, dbv, sta and tcp gene clusters specify the biosynthesis of the glycopeptide antibiotics balhimycin, chloroeremomycin, A40926, A47934 and teicoplanin, respectively. These structurally related compounds share a similar mechanism of action in their inhibition of bacterial cell wall formation. Comparative sequence analysis was performed on the five gene clusters. Extensive conserved synteny was observed between the bal and cep clusters, which direct the synthesis of very similar compounds but originate from two different species of the genus Amycolatopsis. All other cluster pairs show a limited degree of conserved synteny, involving biosynthetically functional gene cassettes: these include those involved in the synthesis of the carbon backbone of two non-proteinogenic amino acids; in the linkage of amino acids 1–3 and 4–7 in the heptapeptide; and in the formation of the aromatic cross-links. Furthermore, these segments of conserved synteny are often preceded by conserved intergenic regions. Phylogenetic analysis of protein families shows several instances in which relatedness in the chemical structure of the glycopeptides is not reflected in the extent of the relationship of the corresponding polypeptides. Coherent branchings are observed for all polypeptides encoded by the syntenous gene cassettes. These results suggest that the acquisition of distinct, functional genetic elements has played a significant role in the evolution of glycopeptide gene clusters, giving them a mosaic structure. In addition, the synthesis of the structurally similar compounds A40926 and teicoplanin appears as the result of convergent evolution.  相似文献   

20.
The chromosome of Streptomyces coelicolor A3(2), a model organism for the genus Streptomyces, contains a cryptic type I polyketide synthase (PKS) gene cluster which was revealed when the genome was sequenced. The ca. 54-kb cluster contains three large genes, cpkA, cpkB and cpkC, encoding the PKS subunits. In silico analysis showed that the synthase consists of a loading module, five extension modules and a unique reductase as a terminal domain instead of a typical thioesterase. All acyltransferase domains are specific for a malonyl extender, and have a B-type ketoreductase. Tailoring and regulatory genes were also identified within the gene cluster. Surprisingly, some genes show high similarity to primary metabolite genes not commonly identified in any antibiotic biosynthesis cluster. Using western blot analysis with a PKS subunit (CpkC) antibody, CpkC was shown to be expressed in S. coelicolor at transition phase. Disruption of cpkC gave no obvious phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号