首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the presence of a low concentration of denaturants or detergents, acidic pH triggers a conformational transition of alpha-helices into beta-sheets in recombinant prion protein (PrP), likely mimicking some aspects of the transformation of host-encoded normal cellular PrP (PrP(C)) into its pathogenic isoform (PrP(Sc)). Here we observed the effects of acidic pH and guanidine hydrochloride (GdnHCl) on the physicochemical and structural properties of PrP(C) derived from normal human brain and determined the ability of the acid/GdnHCl-treated PrP to form a proteinase K (PK)-resistant species in the absence and presence of PrP(Sc) template. After treatment with 1.5 m GdnHCl at pH 3.5, PrP(C) from normal brain homogenates was converted into a detergent-insoluble form similar to PrP(Sc). Unlike PrP(Sc), however, the treated brain PrP(C) was protease-sensitive and retained epitope accessibility to monoclonal antibodies 3F4 and 6H4. Brain PrP(C) treated with acidic pH/GdnHCl acquired partial PK resistance upon further treatment with low concentrations of sodium dodecyl sulfate (SDS). Formation of this PrP(Sc)-like isoform was greatly enhanced by incubation with trace quantities of PrP(Sc) from Creutzfeldt-Jakob disease brain. Acid/GdnHCl-treated brain PrP may constitute a "recruitable intermediate" in PrP(Sc) formation. Further structural rearrangement seems essential for this species to acquire PK resistance, which can be promoted by the presence of a PrP(Sc) template.  相似文献   

2.
Disease-related prion protein, PrPSc, can be distinguished from its normal cellular precursor, PrPC, by its detergent insolubility and partial resistance to proteolysis. Several studies have suggested that copper(II) ions can convert PrPC to a proteinase K-resistant conformation; however, interpretation of these studies is complicated by potential inhibition of proteinase K (PK) by copper(II) ions. Here we have examined directly the kinetic and equilibrium effects of copper(II) ions on PK activity using a simple synthetic substrate, p-nitrophenyl acetate. We show that at equilibrium two to three copper(II) ions bind stoichiometrically to PK and destroy its activity (Kd < 1 microM). This inhibition has two components, an initial reversible and weak binding phase and a slower, irreversible abolition of activity with a half-time of 6 min at saturating copper(II) ion concentrations. Copper(II) ions produce a similar biphasic inhibition of PK activity in the presence of brain homogenate but only when the copper(II) ion concentration exceeds that of the chelating components present in brain tissue. Under these conditions, the apparent resistance of PrPC to proteolysis by PK appears to be directly attributable to the inhibition of PK activity by copper(II) ions.  相似文献   

3.
Several lines of evidence have suggested that copper ions play a role in the biology of both PrP(C) and PrP(Sc), the normal and pathologic forms of the prion protein. To further investigate this intriguing connection, we have analyzed how copper ions affect the biochemical properties of PrP(C) extracted from the brains of transgenic mice and from transfected cells. We report that the metal rapidly and reversibly induces PrP(C) to become protease-resistant and detergent-insoluble. Although these two properties are commonly associated with PrP(Sc), we demonstrate using a conformation-dependent immunoassay that copper-treated PrP is structurally distinct from PrP(Sc). The effect of copper requires the presence of at least one of the five octapeptide repeats normally present in the N-terminal half of the protein, consistent with the idea that the metal alters the biochemical properties of PrP by directly binding to this region. These results suggest potential roles for copper in prion diseases, as well as in the physiological function of PrP(C).  相似文献   

4.
The principal infectious and pathogenic agent in all prion disorders is a beta-sheet-rich isoform of the cellular prion protein (PrP(C)) termed PrP-scrapie (PrP(Sc)). Once initiated, PrP(Sc) is self-replicating and toxic to neuronal cells, but the underlying mechanisms remain unclear. In this report, we demonstrate that PrP(C) binds iron and transforms to a PrP(Sc)-like form (*PrP(Sc)) when human neuroblastoma cells are exposed to an inorganic source of redox iron. The *PrP(Sc) thus generated is itself redox active, and it induces the transformation of additional PrP(C), simulating *PrP(Sc) propagation in the absence of brain-derived PrP(Sc). Moreover, limited depletion of iron from prion disease-affected human and mouse brain homogenates and scrapie-infected mouse neuroblastoma cells results in 4- to 10-fold reduction in proteinase K (PK)-resistant PrP(Sc), implicating redox iron in the generation, propagation, and stability of PK-resistant PrP(Sc). Furthermore, we demonstrate increased redox-active ferrous iron levels in prion disease-affected brains, suggesting that accumulation of PrP(Sc) is modulated by the combined effect of imbalance in brain iron homeostasis and the redox-active nature of PrP(Sc). These data provide information on the mechanism of replication and toxicity by PrP(Sc), and they evoke predictable and therapeutically amenable ways of modulating PrP(Sc) load.  相似文献   

5.
Prion diseases are characterized by the conversion of the cellular prion protein (PrP(C)) to a disease-specific aggregated isoform (PrP(Sc)). We have shown that Mn(2+) ions amplify aggregation, whereas Cu(2+) has an inhibitory effect. To characterize Mn(2+)-induced aggregates, we used cross-correlation analysis as well as scanning for intensely fluorescent targets in an SDS-dependent aggregation assay with fluorescently labeled PrP. We found that the effect of Mn(2+) was mainly due to the association of preformed PrP oligomers to larger aggregates, rapidly reversible by EDTA, and independent of the histidine-dependent copper-binding sites of PrP, suggesting that Mn(2+) induces reversible intermolecular binding. In contrast, the inhibitory effect of Cu(2+) required binding to histidine-containing binding sites, indicating that binding of copper affects the structure of PrP(C) which in turn modifies the susceptibility to manganese and the ability to aggregate. These findings suggest that copper and manganese may also affect prion propagation in vivo.  相似文献   

6.
Suramin induces misfolding of the cellular prion protein (PrP(C)) and interferes with the propagation of infectious scrapie prions. A mechanistic analysis of this effect revealed that suramin-induced misfolding occurs at the plasma membrane and is dependent on the proximal region of the C-terminal domain (aa 90-158) of PrP(C). The conformational transition induces rapid internalization, mediated by the unstructured N-terminal domain, and subsequent intracellular degradation of PrP(C). As a consequence, PrP Delta N adopts a misfolded conformation at the plasma membrane; however, internalization is significantly delayed. We also found that misfolding and intracellular retention of PrP(C) can be induced by copper and that, moreover, copper interferes with the propagation of the pathogenic prion protein (PrP(Sc)) in scrapie-infected N2a cells. Our study revealed a quality control pathway for aberrant PrP conformers present at the plasma membrane and identified distinct PrP domains involved.  相似文献   

7.
The conversion of the cellular isoform of the prion protein (PrP(C)) into the pathologic isoform (PrP(Sc)) is the key event in prion diseases. To study the conversion process, an in vitro system based on varying the concentration of low amounts of sodium dodecyl sulfate (SDS) has been employed. In the present study, the conversion of full-length PrP(C) isolated from Chinese hamster ovary cells (CHO-PrP(C)) was examined. CHO-PrP(C) harbors native, posttranslational modifications, including the GPI anchor and two N-linked glyco-sylation sites. The properties of CHO-PrP(C) were compared with those of full-length and N-terminally truncated recombinant PrP. As shown earlier with recombinant PrP (recPrP90-231), transition from a soluble α-helical state as known for native PrP(C) into an aggregated, β-sheet-rich PrP(Sc)-like state could be induced by dilution of SDS. The aggregated state is partially proteinase K (PK)-resistant, exhibiting a cleavage site similar to that found with PrP(Sc). Compared to recPrP (90-231), fibril formation with CHO-PrP(C) requires lower SDS concentrations (0.0075%), and can be drastically accelerated by seeding with PrP(Sc) purified from brain homogenates of terminally sick hamsters. Our results show that recPrP 90-231 and CHO-PrPC behave qualitatively similar but quantitatively different. The in vivo situation can be simulated closer with CHO-PrP(C) because the specific PK cleave site could be shown and the seed-assisted fibrillization was much more efficient.  相似文献   

8.
Disease-related PrP(Sc) [pathogenic PrP (prion protein)] is classically distinguished from its normal cellular precursor, PrP(C)(cellular PrP) by its detergent insolubility and partial resistance to proteolysis. Although molecular diagnosis of prion disease has historically relied upon detection of protease-resistant fragments of PrP(Sc) using PK (proteinase K), it is now apparent that a substantial fraction of disease-related PrP is destroyed by this protease. Recently, thermolysin has been identified as a complementary tool to PK, permitting isolation of PrP(Sc) in its full-length form. In the present study, we show that thermolysin can degrade PrP(C) while preserving both PK-sensitive and PK-resistant isoforms of disease-related PrP in both rodent and human prion strains. For mouse RML (Rocky Mountain Laboratory) prions, the majority of PK-sensitive disease-related PrP isoforms do not appear to contribute significantly to infectivity. In vCJD (variant Creutzfeldt-Jakob disease), the human counterpart of BSE (bovine spongiform encephalopathy), up to 90% of total PrP present in the brain resists degradation with thermolysin, whereas only approximately 15% of this material resists digestion by PK. Detection of PK-sensitive isoforms of disease-related PrP using thermolysin should be useful for improving diagnostic sensitivity in human prion diseases.  相似文献   

9.
Treiber C  Simons A  Multhaup G 《Biochemistry》2006,45(21):6674-6680
The prion protein (PrP) is the key protein implicated in diseases known as transmissible spongiform encephalopathies. PrP has been shown to bind manganese and copper, the latter being involved in the normal function of the protein. Indeed, upon expression in yeast we noted a major increase in intracellular copper and a decrease in manganese. Interestingly, protease-resistant PrP(Sc)-like protein (PrP(res)) formation was induced when PrP-expressing yeast cells were grown in copper- and/or manganese-supplemented media. The pattern of PrP banding in SDS-PAGE was dominantly determined by manganese. This conformational transition was stable against EDTA treatment but not in the presence of the copper chelators bathocuproinedisulfonic acid or clioquinol. Conclusively, PrP itself influences manganese and copper metabolism, and a replacement of copper in PrP complexes with manganese is highly likely under the condition of copper depletion or if excess amounts of copper and manganese are present. Taken together, our present study demonstrates the involvement of PrP in the regulation of intracellular metal ion homeostasis and uncovers copper and, more severely, manganese ions as in vivo risk factors for the conversion into PrP(Sc).  相似文献   

10.
Conversion of the cellular prion protein (PrP(C)) into the abnormal scrapie isoform (PrP(Sc)) is the hallmark of prion diseases, which are fatal and transmissible neurodegenerative disorders. ER-retained anti-prion recombinant single-chain Fv fragments have been proved to be an effective tool for inhibition of PrP(C) trafficking to the cell surface and antagonize PrP(Sc) formation and infectivity. In the present study, we have generated the secreted version of 8H4 intrabody (Sec-8H4) in order to compel PrP(C) outside the cells. The stable expression of the Sec-8H4 intrabodies induces proteasome degradation of endogenous prion protein but does not influence its glycosylation profile and maturation. Moreover, we found a dramatic diverting of PrP(C) traffic from its vesicular secretion and, most importantly, a total inhibition of PrP(Sc) accumulation in NGF-differentiated Sec-8H4 PC12 cells. These results confirm that perturbing the intracellular traffic of endogenous PrP(C) is an effective strategy to inhibit PrP(Sc) accumulation and provide convincing evidences for application of intracellular antibodies in prion diseases.  相似文献   

11.
Conversion of cellular prion protein (PrP(C)) into a pathological conformer (PrP(Sc)) is thought to be promoted by PrP(Sc) in a poorly understood process. Here, we report that in wild-type mice, the expression of PrP(C) rendered soluble and dimeric by fusion to immunoglobulin Fcgamma (PrP-Fc(2)) delays PrP(Sc) accumulation, agent replication, and onset of disease following inoculation with infective prions. In infected PrP-expressing brains, PrP-Fc(2) relocates to lipid rafts and associates with PrP(Sc) without acquiring protease resistance, indicating that PrP-Fc(2) resists conversion. Accordingly, mice expressing PrP-Fc(2) but lacking endogenous PrP(C) are resistant to scrapie, do not accumulate PrP-Fc(2)(Sc), and do not transmit disease to others. These results indicate that various PrP isoforms engage in a complex in vivo, whose distortion by PrP-Fc(2) affects prion propagation and scrapie pathogenesis. The unique properties of PrP-Fc(2) suggest that soluble PrP derivatives may represent a new class of prion replication antagonists.  相似文献   

12.
Prion diseases are caused by conversion of a normal cell-surface glycoprotein (PrP(C)) into a conformationally altered isoform (PrP(Sc)) that is infectious in the absence of nucleic acid. Although a great deal has been learned about PrP(Sc) and its role in prion propagation, much less is known about the physiological function of PrP(C). In this review, we will summarize some of the major proposed functions for PrP(C), including protection against apoptotic and oxidative stress, cellular uptake or binding of copper ions, transmembrane signaling, formation and maintenance of synapses, and adhesion to the extracellular matrix. We will also outline how loss or subversion of the cytoprotective or neuronal survival activities of PrP(C) might contribute to the pathogenesis of prion diseases, and how similar mechanisms are probably operative in other neurodegenerative disorders.  相似文献   

13.
Prion diseases are fatal neurodegenerative disorders that result from conversion of a normal, cell surface glycoprotein (PrP(C)) into a conformationally altered isoform (PrP(Sc)) that is thought to be infectious. Although a great deal is known about the role of PrP(Sc) in the disease process, the physiological function of PrP(C) has remained enigmatic. In this report, we have used the yeast Saccharomyces cerevisiae to test one hypothesized function of PrP(C), as a receptor for the uptake or efflux of copper ions. We first modified the PrP signal peptide by replacing its hydrophobic core with the signal sequence from the yeast protein dipeptidyl aminopeptidase B, so that the resulting protein was targeted cotranslationally to the secretory pathway when synthesized in yeast. PrP molecules with the modified signal peptide were efficiently glycosylated, glycolipid-anchored, and localized to the plasma membrane. We then tested whether PrP expression altered the growth deficiency phenotypes of yeast strains harboring deletions in genes that encode key components of copper utilization pathways, including transporters, chaperones, pumps, reductases, and cuproenzymes. We found that PrP did not rescue any of these mutant phenotypes, arguing against a direct role for the protein in copper utilization. Our results provide further clarification of the physiological function of PrP(C), and lay the groundwork for using PrP-expressing yeast to study other aspects of prion biology.  相似文献   

14.
The physiological functions of cellular prion protein (PrP(C)) remain unclear. It has been demonstrated that PrP(C) is a copper binding protein and proposed that its functions could be strictly linked to copper metabolism and neuroprotection. The aim of this study was to clarify how extracellular copper modifies PrP(C) expression and metabolism in cultured neurones. We reported here that copper delivered at physiological concentrations significantly decreases PrP(C) mRNA expression in GN11 neurones. Moreover, copper increases the release of PrP(C) into the culture medium. These results indicate that extracellular copper strongly affects the amount of cellular PrP and might represent an interesting strategy to decrease the expression of PrP(C) in neurones and its conversion in the pathological isoform PrP(Sc).  相似文献   

15.
Prions are the infectious agents responsible for transmissible spongiform encephalopathy, and are primarily composed of the pathogenic form (PrP(Sc)) of the host-encoded prion protein (PrP(C)). Recent studies have revealed that protein misfolding cyclic amplification (PMCA), a highly sensitive method for PrP(Sc) detection, can overcome the species barrier in several xenogeneic combinations of PrP(Sc) seed and PrP(C) substrate. Although these findings provide valuable insight into the origin and diversity of prions, the differences between PrP(Sc) generated by interspecies PMCA and by in vivo cross-species transmission have not been described. This study investigated the histopathological and biochemical properties of PrP(Sc) in the brains of tga20 transgenic mice inoculated with Sc237 hamster scrapie prion and PrP(Sc) from mice inoculated with Sc237-derived mouse PrP(Sc), which had been generated by interspecies PMCA using Sc237 as seed and normal mouse brain homogenate as substrate. Tga20 mice overexpressing mouse PrP(C) were susceptible to Sc237 after primary transmission. PrP(Sc) in the brains of mice inoculated with Sc237-derived mouse PrP(Sc) and in the brains of mice inoculated with Sc237 differed in their lesion profiles and accumulation patterns, Western blot profiles, and denaturant resistance. In addition, these PrP(Sc) exhibited distinctive virulence profiles upon secondary passage. These results suggest that different in vivo and in vitro environments result in propagation of PrP(Sc) with different biological properties.  相似文献   

16.
人类朊病毒病中约10%~15%具有家族遗传特性,其中插入或缺失突变多发生于PrP蛋白N末端的八肽重复区域。运用PCR成功地构建并表达了含不同八肽重复数目的PrP蛋白,并观察八肽重复数目的增加对PrP与Cu^2+等二价离子以及tau蛋白的相互作用的影响。实验结果显示:各种纯化后的PrP蛋白对常规浓度PK消化是敏感的,而与Cu^2+共同孵育可使PrP蛋白的PK抗性增强;八肽重复序列的数目及Cu^2+的浓度决定了PK抗性的出现和强弱。另外,MnH可诱导产生与CuH相似的结果,但其诱导效应似乎低于CuH,而Zn^2+对PrP蛋白的PK抗性无影响。GST—tau包被的ELISA检测证实,重组的PrP呈现出明显的tau蛋白结合能力,并且与八肽重复序列的数量相关,重复序列数量越多,结合能力越强。这些结果提示,CuH诱导产生的PrP蛋白PK抗性是通过八肽重复序列区域产生的,并且直接与重复序列的数量相关。另外,PrP蛋白八肽重复序列的存在和数量直接影响PrP与tau蛋白的结合效应。除了八肽区域外,PrP蛋白其它区域似乎也具有一定的tau蛋白结合能力。  相似文献   

17.
Prion diseases are neurodegenerative disorders that result from conformational transformation of a normal cell surface glycoprotein, PrP(C), into a pathogenic isoform, PrP(Sc). Although the normal physiological function of PrP(C) has remained enigmatic, the recent observation that the protein binds copper ions with micromolar affinity suggests a possible role in brain copper metabolism. In this study, we have used mice that express 0, 1, and 10 times the normal level of PrP to assess the effect of PrP expression level on the amount of brain copper and on the properties of two brain cuproenzymes. Using mass spectrometry, we find that the amount of ionic copper in subcellular fractions from brain is similar in all three lines of mice. In addition, the enzymatic activities of Cu-Zn superoxide dismutase and cytochrome c oxidase in brain extracts are similar in these groups of animals, as is the incorporation of (64)Cu into Cu-Zn superoxide dismutase both in cultured cerebellar neurons and in vivo. Our results differ from those of another set of published studies, and they require a re-evaluation of the role of PrP(C) in copper metabolism.  相似文献   

18.
Soluble dimeric prion protein (PrP-Fc(2)) binds to the disease-associated prion protein PrP(Sc), and inhibits prion replication when expressed in transgenic mice. Prion inhibition is effective even if PrP-Fc(2) is expressed at low levels, suggesting that its affinity for PrP(Sc) is higher than that of monomeric PrP(C). Here, we model prion accumulation as an exponential replication cycle of prion elongation and breakage. The exponential growth rate corresponding to this cycle is reflected in the incubation period of the disease. We use a mathematical model to calculate the exponential growth rate, and fit the model to in vivo data on prion incubation times corresponding to different levels of PrP(C) and PrP-Fc(2). We find an excellent fit of the model to the data. Surprisingly, targeting of PrP(Sc) can be effective at concentrations of PrP-Fc(2) lower than that of PrP(C), even if PrP-Fc(2) and PrP(C) have the same affinity for PrP(Sc). The best fit of our model to data predicts that the replicative prion consists of PrP(Sc) oligomers with a mean size of four to 15 units.  相似文献   

19.
During the course of the transmissible spongiform encephalopathy diseases, a protease-resistant ordered aggregate of scrapie prion protein (PrP(Sc)) accumulates in affected animals. From mechanistic and therapeutic points of view, it is relevant to determine the extent to which PrP(Sc) formation and aggregation are reversible. PrP(Sc) solubilized with 5 m guanidine hydrochloride (GdnHCl) was unfolded to a predominantly random coil conformation. Upon dilution of GdnHCl, PrP refolded into a conformation that was high in alpha-helix as measured by CD spectroscopy, similar to the normal cellular isoform of PrP (PrP(C)). This provided evidence that PrP(Sc) can be induced to revert to a PrP(C)-like conformation with a strong denaturant. To examine the reversibility of PrP(Sc) formation and aggregation under more physiological conditions, PrP(Sc) aggregates were washed and resuspended in buffers lacking GdnHCl and monitored over time for the appearance of soluble PrP. No dissociation of PrP from the PrP(Sc) aggregates was detected in aqueous buffers at pH 6 and 7.5. The effective solubility of PrP was <0.7 nm. Treatment of PrP(Sc) with proteinase K (PK) before the analysis did not enhance the dissociation of PrP from the PrP(Sc) aggregates. Treatment with 2.5 m GdnHCl, which partially and reversibly unfolds PrP(Sc), caused only limited dissociation of PrP from the aggregates. The PrP that dissociated from the aggregates over time was entirely PK-sensitive, like PrP(C), whereas all of the aggregated PrP was partially PK-resistant. PrP also dissociated from aggregates of protease-resistant PrP generated in a cell-free conversion reaction, but only if treated with GdnHCl. Overall, the results suggest that PrP aggregation is not appreciably reversible under physiological conditions, but dissociation and refolding can be enhanced by treatments with GdnHCl.  相似文献   

20.
In transmissible spongiform encephalopathies, the cellular prion protein (PrP(C)) undergoes a conformational change from a prevailing alpha-helical structure to a beta-sheet-rich, protease-resistant isoform, termed PrP(Sc). PrP(C) has two characteristics: a high affinity for Cu(2+) and a strong pH-dependent conformation. Lines of evidence indicate that PrP(Sc) conformation is dependent on copper and that acidic conditions facilitate the conversion of PrP(C) --> PrP(Sc). In each species, PrP(Sc) exists in multiple conformations, which are associated with different prion strains. In sporadic Creutzfeldt-Jakob disease (sCJD), different biochemical types of PrP(Sc) have been identified according to the size of the protease-resistant fragments, patterns of glycosylation, and the metal-ion occupancy. Based on the site of cleavage produced by proteinase K, we investigated the conformational stability of PrP(Sc) under acidic, neutral, and basic conditions in 42 sCJD subjects. Our study shows that only one type of sCJD PrP(Sc), associated with the classical form, shows a pH-dependent conformation, whereas two other biochemical PrP(Sc) types, detected in distinct sCJD phenotypes, are unaffected by pH variations. This novel approach demonstrates the presence of three types of PrP(Sc) in sCJD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号