首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been established that meiotic recombination and chromosome segregation are inhibited when meiotic DNA replication is blocked. Here we demonstrate that early meiotic gene (EMG) expression is also inhibited by a block in replication. Since early meiotic genes are required to promote meiotic recombination and DNA division, the low expression of these genes may contribute to the block in meiotic progression. We have identified three Hur- (HU reduced recombination) mutants that fail to couple meiotic recombination and gene expression with replication. One of these mutations is in RPD3, a gene required to maintain meiotic gene repression in mitotic cells. Complete deletions of RPD3 and the repression adapter SIN3 permitted recombination and early meiotic gene expression when replication was inhibited with hydroxyurea (HU). Biochemical analysis showed that the Rpd3p-Sin3p-Ume6p repression complex does exist in meiotic cells. These observations suggest that repression of early meiotic genes by SIN3 and RPD3 is critical for the normal response to inhibited replication. A second response to inhibited replication has also been discovered. HU-inhibited replication reduced the accumulation of phospho-Ume6p in meiotic cells. Phosphorylation of Ume6p normally promotes interaction with the meiotic activator Ime1p, thereby activating EMG expression. Thus, inhibited replication may also reduce the Ume6p-dependent activation of EMGs. Taken together, our data suggest that both active repression and reduced activation combine to inhibit EMG expression when replication is inhibited.  相似文献   

2.
RIP (Repeat-Induced point Mutation) and PR (Premeiotic Recombination) are two developmentally regulated processes in filamentous ascomycetes. RIP detects and mutates duplicated DNA sequences, while PR results in deletion of the interstitial sequence between cis-duplicated DNA sequences. These two silencing processes take place between fertilization and premeiotic replication, a period during which the mating-type genes play an active role in several developmental processes. Previous studies have shown that mutations in the mating-type genes affect the development of the fruiting body. This study provides evidence that mutations in the mating-type genes reduce the frequency of RIP and PR. It establishes that alleles which have the more stringent effect on fruiting-body development, have also the strongest effect on RIP and PR frequencies. We propose two models for the relation between mating-type genes and RIP and PR, one based on the direct control of RIP and PR by mating-type regulatory proteins, the other based on an indirect effect through the control of a development step during which RIP and PR take place.  相似文献   

3.
RIP (Repeat-Induced point Mutation) and PR (Premeiotic Recombination) are two developmentally regulated processes in filamentous ascomycetes. RIP detects and mutates duplicated DNA sequences, while PR results in deletion of the interstitial sequence between cis-duplicated DNA sequences. These two silencing processes take place between fertilization and premeiotic replication, a period during which the mating-type genes play an active role in several developmental processes. Previous studies have shown that mutations in the mating-type genes affect the development of the fruiting body. This study provides evidence that mutations in the mating-type genes reduce the frequency of RIP and PR. It establishes that alleles which have the more stringent effect on fruiting-body development, have also the strongest effect on RIP and PR frequencies. We propose two models for the relation between mating-type genes and RIP and PR, one based on the direct control of RIP and PR by mating-type regulatory proteins, the other based on an indirect effect through the control of a development step during which RIP and PR take place.  相似文献   

4.
5.
The mating-type locus of Podospora anserina controls fusion of sexual cells as well as subsequent stages of development of the fruiting bodies. The two alleles at the locus are defined by specific DNA regions comprising 3.8 kb for mat+ and 4.7 kb for mat?, which have identical flanking sequences. Here we present the characterization of several mutants that have lost mat+-specific sequences. One mutant was obtained fortuitously and the other two were constructed by gene replacement. The mutants are deficient in mating with strains of either mat genotype but are still able to differentiate sexual reproductive structures. The loss of the mating type does not lead to any discernible phenotype during vegetative growth: in particular it does not change the life span of the strain. The mutants can recover mating ability if they are transformed with DNA containing the complete mat+ or mat? information. The transformants behave in crosses as do the reference mat+ or mat? strains, thus indicating that the transgenic mat+ and mat? are fully functional even when they have integrated at ectopic sites.  相似文献   

6.
7.
8.
9.
10.
11.
12.
Summary In order to learn the internal conditions for the production of the various phenoloxidases produced by the Ascomycete Podospora anserina the wild strain has been grown under controlled conditions in a fermenter for a period of 34 days. Samples were withdrawn at regular intervals and assayed for mycelial yield and intra- and extracellular phenoloxidase production.Maximal yield was obtained at the following age of the culture: Mycelial production 9 d, tyrosinase 4 d, the high molecular weight laccase I between 9 and 19 d. The low molecular weight laccases II and III, initially present in medium concentrations, dropped to an early minimum after 4 days, followed by an increase with a maximum in the late autolytic phase.The changes in the phenoloxidase spectrum and the antiparallel production curve for the high molecular weight against the low molecular weight laccases are discussed in relation to the earlier observed genetical and physiological control of phenoloxidase synthesis and in relation to the possibility of laccase I being composed of active subunits of low molecular weight laccases.With support of the Deutsche Forschungsgemeinschaft, Bad Godesberg (Germany).  相似文献   

13.
14.
15.
16.
17.
Catalases are enzymes that play critical roles in protecting cells against the toxic effects of hydrogen peroxide. They are implicated in various physiological and pathological conditions but some of their functions remain unclear. In order to decipher the role(s) of catalases during the life cycle of Podospora anserina, we analyzed the role of the four monofunctional catalases and one bifunctional catalase-peroxidase genes present in its genome. The five genes were deleted and the phenotypes of each single and all multiple mutants were investigated. Intriguingly, although the genes are differently expressed during the life cycle, catalase activity is dispensable during both vegetative growth and sexual reproduction in laboratory conditions. Catalases are also not essential for cellulose or fatty acid assimilation. In contrast, they are strictly required for efficient utilization of more complex biomass like wood shavings by allowing growth in the presence of lignin. The secreted CATB and cytosolic CAT2 are the major catalases implicated in peroxide resistance, while CAT2 is the major player during complex biomass assimilation. Our results suggest that P. anserina produces external H(2)O(2) to assimilate complex biomass and that catalases are necessary to protect the cells during this process. In addition, the phenotypes of strains lacking only one catalase gene suggest that a decrease of catalase activity improves the capacity of the fungus to degrade complex biomass.  相似文献   

18.
19.
Summary Protoplasts of wild-type strain s and a long-lived extrachromosomal mutant (AL2) of the ascomycete Podospora anserina were transformed using a plasmid (pAN7-1) which contains the hygromycin B phosphotransferase gene (hph) of Escherichia coli under the control of Aspergillus nidulans regulatory sequences. After optimizing the transformation procedure, transformation efficiencies of 15–21 transformants/ plasmid DNA were obtained. Using a second selectable vector (pBT3), which contains the -tubuline gene of a benomyl-resistant Neurospora crassa mutant, the cotransformation rate was determined. Southern blot hybridization experiments revealed that the transforming plasmid became integrated into the genome of the recipient either as a single copy or as multiple copies. In addition, the data from molecular as well as from classical genetic analyses indicated that in independent transformants vector integration occurred at different positions. The mitotic and meiotic stability of transformants proved to be dependent on the number of integrated plasmid copies. Genetic analyses revealed a transformant in which the integrated vector is closely linked to the mating-type locus. Fractination of whole chromosomes by pulsed field gel electrophoresis and subsequent hybridization of the immobilized DNAs against radiolabelled vector sequences indicated the largest of seven chromosomes as the chromosome containing the integrated vector and thus the mating-type locus. Offprint requests to: K. Esser  相似文献   

20.
For the low molecular weight laccases II and III of Podospora anserina the kinetic parameters Michaelis constant (K M) and maximum reaction velocity (V) were determined polarographically under pH optimum conditions for representative substrates of different substitution patterns.Laccase II showed two peaks in its pH optimum curve, each with a different substrate specificity, indicating structural differences to laccase III which exhibits only one broad peak.Under optimum conditions the affinities of various substrates are determined by their substitution patterns: high affinity for simple o-and p-diphenols, low affinity for m-phenols. The maximal velocity remains largely uninfluenced.This study of the effect of substitution on substrate utilization leads to the assumption that there is no specific reactive site for m-phenols in either laccase. Oxidation of m-phenols, however, takes only place at high pH values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号