首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Sucrose export defective1 (Sxd1) gene of maize was cloned and shown to encode a novel protein conserved between plants and cyanobacteria. The structure of the Sxd1 locus was determined in wild-type plants and two independent sxd1 alleles. Expression analysis demonstrated that the gene was transcribed in all green tissues, with highest levels in maturing leaf blades. In situ hybridization studies revealed high levels of Sxd1 mRNA in bundle sheath cells, with lower levels within the mesophyll. The SXD1 protein was localized to chloroplasts, in both bundle sheath and mesophyll cells. Levels of sucrose, glucose, and fructose were compared between wild-type and sxd1 plants. Mutant plants were fully capable of producing sucrose and accumulated all three sugars at concentrations above those measured in wild-type plants. Despite these increased sugar concentrations, photosynthetic gene expression was not significantly downregulated in affected areas of sxd1 leaf blades. These results are consistent with photosynthate being trapped within anthocyanin-accumulating regions of sxd1 leaves due to plasmodesmal occlusion at the bundle sheath-vascular parenchyma boundary of the minor veins. A model for SXD1 function is proposed in which the protein is involved in a chloroplast-to-nucleus signaling pathway necessary for proper late-stage differentiation of maize bundle sheath cells, including the developmentally regulated modification of plasmodesmata.  相似文献   

2.
We investigated the phloem loading pathway in barley, by determining plasmodesmatal frequencies at the electron microscope level for both intermediate and small blade bundles of mature barley leaves. Lucifer yellow was injected intercellularly into bundle sheath, vascular parenchyma, and thin-walled sieve tubes. Passage of this symplastically transported dye was monitored with an epifluorescence microscope under blue light. Low plasmodesmatal frequencies endarch to the bundle sheath cells are relatively low for most interfaces terminating at the thin- and thick-walled sieve tubes within this C3 species. Lack of connections between vascular parenchyma and sieve tubes, and low frequencies (0.5% plasmodesmata per μm cell wall interface) of connections between vascular parenchyma and companion cells, as well as the very low frequency of pore-plasmodesmatal connections between companion cells and sieve tubes in small bundles (0.2% plasmodesmata per μm cell wall interface), suggest that the companion cell-sieve tube complex is symplastically isolated from other vascular parenchyma cells in small bundles. The degree of cellular connectivity and the potential isolation of the companion cell-sieve tube complex was determined electrophysiologically, using an electrometer coupled to microcapillary electrodes. The less negative cell potential (average –52 mV) from mesophyll to the vascular parenchyma cells contrasted sharply with the more negative potential (–122.5 mV) recorded for the companion cell-thin-walled sieve tube complex. Although intercellular injection of lucifer yellow clearly demonstrated rapid (0.75 μm s-1) longitudinal and radial transport in the bundle sheath-vascular parenchyma complex, as well as from the bundle sheath through transverse veins to adjacent longitudinal veins, we were neither able to detect nor present unequivocal evidence in support of the symplastic connectivity of the sieve tubes to the vascular parenchyma. Injection of the companion cell-sieve tube complex, did not demonstrate backward connectivity to the bundle sheath. We conclude that the low plasmodesmatal frequencies, coupled with a two-domain electropotential zonation configuration, and the negative transport experiments using lucifer yellow, precludes symplastic phloem loading in barley leaves.  相似文献   

3.
用透射电子显微技术研究了西瓜叶片小叶脉,结果表明,小叶脉是由大型维管束鞘细胞包围的维管束,维管束呈现大的头部和线形的柄部,柄部是单列细胞的木质部,由维管薄壁细胞和导管分子组成;头部是韧皮部,由维管薄壁细胞、伴胞和筛管分子组成。同一小叶脉内常见有超微结构特征显著不同的两种伴胞:一种伴胞体积小,与维管束鞘细胞接触面较小或不接触,细胞内有大液泡,细胞壁上没有胞间连丝或只有少数不分枝的胞间连丝,这种伴胞为2a型;另一种伴胞体积大,通常位于韧皮部两翼,不含大液泡而含大量小泡,与维管束鞘细胞接触面较大,接触面上有大量具分枝的胞间连丝,分枝部分比未分枝部分直径小,这种伴胞为中间细胞类型。显然,西瓜是小叶脉内兼具两种类型伴胞的植物。  相似文献   

4.
用透射电子显微技术研究了西瓜叶片小叶脉,结果表明,小叶脉是由大型维管束鞘细胞包围的维管束,维管束呈现大的头部和线形的柄部,柄部是单列细胞的木质部,由维管薄壁细胞和导管分子组成;头部是韧皮部,由维管薄壁细胞、伴胞和筛管分子组成。同一小叶脉内常见有超微结构特征显著不同的两种伴胞:一种伴胞体积小,与维管束鞘细胞接触面较小或不接触,细胞内有大液泡,细胞壁上没有胞间连丝或只有少数不分枝的胞间连丝,这种伴胞为2a型;另一种伴胞体积大,通常位于韧皮部两翼,不含大液泡而含大量小泡,与维管束鞘细胞接触面较大,接触面上有大量具分枝的胞间连丝,分枝部分比未分枝部分直径小,这种伴胞为中间细胞类型。显然,西瓜是小叶脉内兼具两种类型伴胞的植物。  相似文献   

5.
Haritatos E  Medville R  Turgeon R 《Planta》2000,211(1):105-111
Leaf and minor vein structure were studied in Arabidopsis thaliana (L.) Heynh. to gain insight into the mechanism(s) of phloem loading. Vein density (length of veins per unit leaf area) is extremely low. Almost all veins are intimately associated with the mesophyll and are probably involved in loading. In transverse sections of veins there are, on average, two companion cells for each sieve element. Phloem parenchyma cells appear to be specialized for delivery of photoassimilate from the bundle sheath to sieve element-companion cell complexes: they make numerous contacts with the bundle sheath and with companion cells and they have transfer cell wall ingrowths where they are in contact with sieve elements. Plasmodesmatal frequencies are high at interfaces involving phloem parenchyma cells. The plasmodesmata between phloem parenchyma cells and companion cells are structurally distinct in that there are several branches on the phloem parenchyma cell side of the wall and only one branch on the companion cell side. Most of the translocated sugar in A. thaliana is sucrose, but raffinose is also transported. Based on structural evidence, the most likely route of sucrose transport is from bundle sheath to phloem parenchyma cells through plasmodesmata, followed by efflux into the apoplasm across wall ingrowths and carrier-mediated uptake into the sieve element-companion cell complex. Received: 5 October 1999 / Accepted: 20 November 1999  相似文献   

6.
为了解桑叶细脉中伴胞的超微结构,采用透射电子显微技术对桑叶细脉中伴胞进行观察,着重伴胞与相邻细胞界面上胞间连丝发生频率.结果表明,(1)伴胞含丰富细胞器,细胞壁光滑,无壁内突;(2)伴胞细胞壁上具有大量胞间连丝,胞间连丝通常聚集,并常发生分枝;(3)伴胞与不同类型细胞界面上的胞间连丝发生频率有差异,伴胞-维管束鞘细胞界面上发生频率为25.12±1.83个/μm2,伴胞-伴胞界面上20.18±1.7个2/μm2,伴胞-维管薄壁细胞界面上5.42±0.6个/μm2.基于上述观察,认为桑叶细脉中的伴胞属于1-2a型,韧皮部装载途径属于共质体类型.  相似文献   

7.
The minor veins and contiguous tissues of mature leaves of Populus deltoides Bartr. ex Marsh. were examined with the electron microscope to determine the ultrastructural characteristics of the component cells and to determine the structure, distribution, and frequency of plasmodesmata between the various cell types. In addition, plasmolytic studies were carried out to determine the solute concentrations of the various cell types of the minor veins and contiguous tissues. The cells comprising the mesophyll and bundle sheath contain all the components typical of photosynthetic cells. Paraveinal mesophyll cells and bundle-sheath cells have fewer microbodies and smaller chloroplasts than do palisade parenchyma cells. Vascular parenchyma and companion cells tend to intergrade with one another structurally but can be distinguished from one another by their characteristic plastids. The mature, enucleate sieve-tube member is lined by a parietal layer of cytoplasm consisting of plasmalemma, endoplasmic reticulum, mitochondria, plastids, and P-protein. Plasmodesmata occur along all possible routes from the palisade parenchyma cells to the sieve tubes of the minor veins, and their frequency increases with increasing proximity to the sieve-tube members. Plasmolytic studies revealed that the paraveinal mesophyll cells had a higher C50 (estimated mannitol concentration plasmolyzing, on the average, 50% of a given cell type) than any other cell type of the leaf. Concentration gradients existed along the palisade cell/bundle-sheath cell/companion cell (or vascular parenchyma cell) route as well as along the paraveinal mesophyll cell/bundle-sheath cell/companion cell (or vascular parenchyma cell) route. Considering the frequency of plasmodesmata along these routes, it is conceivable that photosynthate diffuses from palisade cells to the companion cells along concentration gradients. Within the minor veins, the C50 was higher for sieve-tube members than for either companion cells or vascular parenchyma cells, indicating that loading of the sieve tubes is an active, energy-dependent process.  相似文献   

8.
The ultrastructure of minor veins of Beta vulgaris was examined with reference to possible models for vein loading of translocate. Structural evidence was reviewed in the light of recent physiological observations as a basis for proposed mechanisms. Features which appeared to be of significance in formulating a model included the open, differentiated sieve plates, the predominance of organelle-rich parenchyma cells, and the branched plasmodesmata connecting sieve tubes and parenchyma cells. The resulting model views cell to cell movement of photosynthate via the symplast to the specialized parenchyma cells. The actively accumulated sucrose appears to move from the specialized parenchyma cells into the sieve tubes via plasmodesmata in the lateral and end walls.  相似文献   

9.
10.
The location and structure of ferritin in the parenchyma of leaf minor veins of the common ice plant (Mesembryanthemum crystallinum L.) treated with exogenous putrescine under salinity conditions were investigated by electron microscopy. Considerable aggregates of ferritin were detected in the chloroplasts of bundle sheath cells, in companion phloem cells, and other parenchyma cells of leaf minor veins. The structure of ferritin in the vascular parenchyma chloroplasts suggests that it was partially degraded and converted to phytosiderin. This point of view is based on indistinct structure of Fe-containing cores of ferritin molecules, break of distance between the cores, and their pronounced ability to aggregate and produce larger structures. Aggregation of Fe-containing cores apparently pointed to the destruction of ferritin protein envelope or its partial degradation. In a certain stage of ferritin destruction, electron-dense material and the structures resembling small vesicles appeared between the Fe-containing cores. Electron-dense inclusions, whose structure was similar to that of phytosiderin, were also detected in the vacuoles. Examination of the cross sections done without additional staining showed that the same as ferritin, phytosiderin in the chloroplasts and vacuoles was dark-colored against weakly colored cellular structures. In the vascular parenchyma of control plant leaves, the level of ferritin and phytosiderin was greater than in the mesophyll and much lower than in the plants simultaneously treated with NaCl and putrescine. In control material, iron cores of ferritin and phytosiderin were more light-colored and 2–3 times smaller in size than in the experimental treatment. Destruction of ferritin essentially did not occur in the mesophyll but was observed in the chloroplasts of bundle sheath cells on the border between the mesophyll and vascular bundle. The presence of much ferritin and phytosiderin on the border between the mesophyll and the vessels is accounted for by the fact that the vascular parenchyma is a buffer area that maintains a specific concentration of iron in the mesophyll of leaves and other parts of the plant. Within the cell, the role of such a buffer is performed by ferritin and vacuoles. Transformation of ferritin to insoluble hydrophobic phytosiderin is supposed to be an efficient way of withdrawing the excess of active iron from the cellular metabolism and therefore of relaxing oxidative stress. Ferritin and phytosiderin were detected not only in parenchyma cells of leaf minor veins but in sieve tubes as well. This suggests that iron may be transported within the plant as a component of protein complex.  相似文献   

11.
Large, intermediate, and small bundles and contiguous tissues of the leaf blade of Hordeum tvulgare L. ‘Morex’ were examined with the transmission electron microscope to determine their cellular composition and the distribution and frequency of the plasmodesmata between the various cell combinations. Plasmodesmata are abundant at the mesophyll/parenchymatous bundle sheath, parenchymatous bundle sheath/mestome sheath, and mestome sheath/vascular parenchyma cell interfaces. Within the bundles, plasmodesmata are also abundant between vascular parenchyma cells, which occupy most of the interface between the sieve tube-companion cell complexes and the mestome sheath. Other vascular parenchyma cells commonly separate the thick-walled sieve tubes from the sieve tube-companion cell complexes. Plasmodesmatal frequencies between all remaining cell combinations of the vascular tissues are very low, even between the thin-walled sieve tubes and their associated companion cells. Both the sieve tube-companion cell complexes and the thick-walled sieve tubes, which lack companion cells, are virtually isolated symplastically from the rest of the leaf. Data on plamodesmatal frequency between protophloem sieve tubes and other cell types in intermediate and large bundles indicate that they (and their associated companion cells, when present) are also isolated symplastically from the rest of the leaf. Collectively, these data indicate that both phloem loading and unloading in the barley leaf involve apoplastic mechanisms.  相似文献   

12.
Summary Using Lucifer Yellow we have demonstrated that the phloem-loading pathway from the mesophyll to the bundle sheath—vascular parenchyma interface inZea mays source leaves follows a symplasmic route in small and intermediate vascular bundles in control as well as in the green sections of mutant sucrose-export-defective (SXD-1) plants. In the anthocyanin-rich mutant leaf sections, Lucifer Yellow transport was prohibited along the same path, at the bundle sheath—vascular parenchyma interface in particular. Plasmodesmata at the latter interface in SXD-1 anthocyanin-rich leaf sections appear to be structurally altered through callose deposition at the plasmodesmal orifices. We suggest that a transport bottleneck at the bundle sheath—vascular parenchyma interface is thus orchestrated and regulated through callose formation, preventing symplasmic transport across this important loading interface.  相似文献   

13.
Minor veins and contiguous tissues of the Spinacia oleracea leaf were analyzed by electron microscopy to determine the characteristics of the component cells and the structure, distribution, and frequency of plasmodesmata between the various cell types of the leaf. Mesophyll and bundle-sheath cells contain components typical of photosynthetic cells although the latter cell type contains smaller chloroplasts and fewer mitochondria and microbodies than the mesophyll cells. In addition, the mesophyll cells contain numerous invaginations of the plasmalemma bordering the chloroplasts and evaginations of the outer membrane of the opposing chloroplast envelope. In places, these membranes appear continuous with each other. The minor veins consist of tracheary elements, xylem parenchyma cells, sieve-tube members, companion and phloem parenchyma cells, and other cells simply designated vascular parenchyma cells. The companion and phloem parenchyma cells are typically larger than the sieve-tube members with the companion cells containing a much denser cytoplasm that the phloem parenchyma. Cytoplasmic connections occur along all possible routes from the mesophyll to the sieve-tube members and consist of either simple or branched plasmodesmata between parenchymatic elements or pore-plasmodesmata between the sieve-tube members and parenchyma cells. The highest frequency of plasmodesmata occurs between the sieve-tube members and companion cells, although the value is essentially the same as between the various parenchymatic elements of the phloem. Compared to several previously studied species, the frequency of plasmodesmata between cell types of the spinach leaf is low. These results are discussed in relation to apoplastic vs. symplastic solute transport and sieve-tube loading in this species.  相似文献   

14.
Mature field- and growth-chamber-grown leaves of Populus deltoides Bartr. ex Marsh. were examined with light and scanning electron microscopes to determine their vasculature and the spatial relationships of the various orders of vascular bundles to the mesophyll. Three leaf traces, one median and two lateral, enter the petiole at the node. Progressing acropetally in the petiole these bundles are rearranged and gradually form as many as 13 tiers of vascular tissue in the petiole at the base of the lamina. (Most leaves contained seven vertically stacked tiers.) During their course through the midrib the tiers “unstack” and portions diverge outward and continue as secondary veins toward the margin on either side of the lamina. As the midvein approaches the leaf tip it is represented by a single vascular bundle which is a continuation of the original median bundle. Tertiary veins arise from the secondary veins or the midvein, and minor veins commonly arise from all orders of veins. All major veins–primaries, secondaries, intersecondaries, and tertiaries–are associated with rib tissue, while minor veins are completely surrounded by a parenchymatous bundle sheath. The bundle sheaths of tertiary, quaternary, and portions of quinternary veins are associated with bundle-sheath extensions. Minor veins are closely associated spatially with both ad- and abaxial palisade parenchyma of the isolateral leaf and also with one or two layers of paraveinal mesophyll that extend horizontally between the veins. The leaves of growth-chamber-grown plants had thinner blades, a higher proportion of air space, and greater interveinal distances than those of field-grown plants.  相似文献   

15.
Leaves of Sonchus oleraceus (Asteraceae) were examined with the electron microscope to determine plasmodesmatal frequencies and other structural features relating to the collection of photoassimilate and its subsequent loading into minor veins. Few plasmodesmata occur between mesophyll cells, which contain chloroplasts that are sometimes connected to both the plasmalemma and the tonoplast by membranous tubules. The minor veins consist of tracheary elements, sieve-tube members, vascular parenchyma cells, and companion cells. The latter two cell types are transfer cells, with some of the fingerlike wall ingrowths in companion cells being traversed lengthwise by plasmodesmata. The frequencies of plasmodesmata at the mesophyllbundle sheath boundary and within are higher at some interfaces than at corresponding interfaces in nine other species, including some that previously had been characterized as loading assimilate via the symplast. It is thus premature to designate all species containing transfer cells in their minor veins as loading assimilate only via the apoplast.  相似文献   

16.
Cytological observations were made on developing seed coat of broad bean (Vicia faba L.) by use of light and electron microscopy. Attention was focused on vascular distribution. The seeds were attached by the funiculus to tile large vascular bundles of pericarp of broad bean. The vascular bundle passed through hilum and two layers of palisade, entered the pa- renchyma of seed coat, then diverged in to two routes. One was a complete vascular bundle composed of both'phloem and xylem elements, it stretched down through seed raphe, then upward and terminated near the radical. The other was a two-recurrent-vascular-bundle with only phloem constitutents, they extended forward detoured the micropyle and extended downward, but did not join with the upward complete vascular bundle. The recurrent vascular bundles branched out many small short branches. The obvious difference between phloem of recurrent vascular bundle and of complete vascular bundle was that the companion ceils of the former did not normally modify to transfer ceils, but connected to the adjoining parenchyma cells through abundant plasmodesmata. It is deduced from the structural analysis that the symplastic route may play an important role, particularly in the region of recurrent vascular bundle, in the course of importing assimilates unloading in seed coat and transporting to the embryo.  相似文献   

17.
D. G. Fisher 《Planta》1986,169(2):141-152
The photosynthetic tissue of green portions of variegated Coleus blumei leaves consists primarily of palisade and spongy parenchyma cells as well as bundle-sheath cells. The moderate numbers of plasmodesmata connecting these cells may be sufficient to provide a symplastic pathway for assimilates moving toward the minor veins. The minor veins, however, are unusual in having two sets of phloem-loading cells which have little symplastic continuity with one another: one consisting of large, peripherally located intermediary cells, and a second set made up of smaller, usually more internal companion cells, both sets having their associated sieve-tube members. The intermediary cells are connected to vascular-parenchyma and bundle-sheath cells by unique branched plasmodesmata which are particularly abundant at the bundle-sheath interface. In addition, numerous plasmodesmata-pore connections occur between the intermediary cells and their associated sieve-tube members. Neither the intermediary cells nor their sieve-tube members plasmolyze when treated with 1.4 M mannitol, whereas mesophyll and vascular-parenchyma cells plasmolyze at 0.5 M and bundle-sheath cells at 0.6 M mannitol. By contrast, the companion cells and their associated sieve-tube members are symplastically isolated from the bundle-sheath cells and the sieve-tube-intermediary-cell complexes, and share few plasmodesmata with the vascular-parenchyma cells. Moreover, the companion cells plasmolyze at 1.1 M mannitol and their sieve tubes at 1.3 M. The intermediary-cell-sieve-tube complex thus appears to be structurally equipped to load assimilates entirely via the symplast, while the sieve-tube-companion-cell complex is probably loaded from the apoplast.Abbreviation ER endoplasmic reticulum  相似文献   

18.
A morphometric analysis of developing leaves of Nicotiana tabacum L. was conducted to determine whether imported photoassimilates could be unloaded by symplastic transport and whether interruption of symplastic transport could account for termination of import. Five classes of veins were recognized, based on numbers of cells in transverse section. Photoassimilate is unloaded primarily from Class III veins in tissue nearing the end of the sink phase of development. Smaller veins (Class IV and V) do not transport or unload photoassimilate in sink tissue because the sieve elements of these veins are immature until after the tissue stops importing. In Class III veins the sieve element-companion cell (SE-CC) complexes are surrounded by phloem parenchyma which abuts the bundle sheath. Along the most obvious unloading route, from SE-CC complex to phloem parenchyma to bundle sheath to mesophyll cells, the frequency of plasmodesmata at each interface increases. To determine whether this pattern of plasmodesmatal contact is consistent with symplastic unloading we first demonstrated, by derivation from Fick's law that the rate of diffusion from a compartment is proportional to a number N which is equal to the ratio of surface area to volume of the compartment multiplied by the frequency of pores (plasmodesmata) which connect it to the next compartment. N was calculated for each compartment within the vein which has the SE-CC complex as its center, and was shown to be statistically the same in all cases except one. These observations are consistent with a symplastic unloading route. As the leaf tissue matures and stops importing, plasmodesmatal frequency along the unloading route decreases and contact area between cells also decreases as intercellular spaces enlarge. As a result, the number of plasmodesmata between the SE-CC complex and the first layer of mesophyll cells declines in nonimporting tissue to 34% of the number found in importing tissue, indicating that loss of symplastic continuity between the phloem and surrounding cells plays a role in termination of photoassimilate unloading.Abbreviation SE-CC sieve element-companion cell  相似文献   

19.
To study the export of sugars from leaves and their long-distance transport, sucrose-proton/co-transporter activity of potato was inhibited by antisense repression of StSUT1 under control of either a ubiquitously active (CaMV 35S ) or a companion-cell-specific (rolC) promotor in transgenic plants. Transformants exhibiting reduced levels of the sucrose-transporter mRNA and showing a dramatic reduction in root and tuber growth, were chosen to investigate the ultrastructure of their source leaves. The transformants had a regular leaf anatomy with a single-layered palisade parenchyma, and bicollateral minor veins within the spongy parenchyma. Regardless of the promoter used, source leaves from transformants showed an altered leaf phenotype and a permanent accumulation of assimilates as indicated by the number and size of starch grains, and by the occurrence of lipid-storing oleosomes. Starch accumulated throughout the leaf: in epidermis, mesophyll and, to a smaller degree, in phloem parenchyma cells of minor veins. Oleosomes were observed equally in mesophyll and phloem parenchyma cells. Companion cells were not involved in lipid accmulation and their chloroplasts developed only small starch grains. The similarity of ultrastructural symptoms under both promotors corresponds to, rather than contradicts, the hypothesis that assimilates can move symplasmically from mesophyll, via the bundle sheath, up to the phloem. The microscopical symptoms of a constitutively high sugar level in the transformant leaves were compared with those in wild-type plants after cold-girdling of the petiole. Inhibition of sugar export, both by a reduction of sucrose carriers in the sieve element/companion cell complex (se/cc complex), or further downstream by cold-girdling, equally evokes the accumulation of assimilates in all leaf tissues up to the se/cc complex border. However, microscopy revealed that antisense inhibition of loading produces a persistently high sugar level throughout the leaf, while cold-girdling leads only to local patches containing high levels of sugar. Received: 4 March 1998 / Accepted: 7 April 1998  相似文献   

20.
Lopez L  Camas A  Shivaji R  Ankala A  Williams P  Luthe D 《Planta》2007,226(2):517-527
When lepidopteran larvae feed on the insect-resistant maize genotype Mp708 there is a rapid accumulation of a defensive cysteine protease, Maize insect resistance 1-cysteine protease (Mir1-CP), at the feeding site. Silver-enhanced immunolocalization visualized with both light and transmission electron microscopy was used to determine the location of Mir1-CP in the maize leaf. The results indicated that Mir1-CP is localized predominantly in the phloem of minor and intermediate veins. After 24 h of larval feeding, Mir1-CP increased in abundance in the vascular parenchyma cells and in the thick-walled sieve element (TSE); it was also found localized to the bundle sheath and mesophyll cells. In situ hybridization of mRNA encoding Mir1-CP indicated that the primary sites of Mir1-CP synthesis in the whorl are the vascular parenchyma and bundle sheath cells. In addition to the phloem, Mir1-CP was also found in the metaxylem of the leaf and root. After 24 h of foliar feeding, the amount of Mir1-CP in the root xylem increased and it appeared to move from xylem parenchyma into the root metaxylem elements. The accumulation of Mir1-CP in maize vascular elements suggests Mir1-CP may move through these tissues to defend against insect herbivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号