首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Defective Escherichia coli signal peptides function in yeast   总被引:3,自引:2,他引:1  
To investigate structural characteristics important for eukaryotic signal peptide function in vivo, a hybrid gene with interchangeable signal peptides was cloned into yeast. The hybrid gene encoded nine residues from the amino terminus of the major Escherichia coli lipoprotein, attached to the amino terminus of the entire mature E. coli beta-lactamase sequence. To this sequence were attached sequences encoding the nonmutant E. coli lipoprotein signal peptide, or lipoprotein signal peptide mutants lacking an amino-terminal cationic charge, with shortened hydrophobic core, with altered potential helicity, or with an altered signal-peptide cleavage site. These signal-peptide mutants exhibited altered processing and secretion in E. coli. Using the GAL10 promoter, production of all hybrid proteins was induced to constitute 4-5% of the total yeast protein. Hybrid proteins with mutant signal peptides that show altered processing and secretion in E. coli, were processed and translocated to a similar degree as the non-mutant hybrid protein in yeast (approximately 36% of the total hybrid protein). Both non-mutant and mutant signal peptides appeared to be removed at the same unique site between cysteine 21 and serine 22, one residue from the E. coli signal peptidase II processing site. The mature lipo-beta-lactamase was translocated across the cytoplasmic membrane into the yeast periplasm. Thus the protein secretion apparatus in yeast recognizes the lipoprotein signal sequence in vivo but displays a specificity towards altered signal sequences which differs from that of E. coli.  相似文献   

2.
Cells of Saccharomyces cerevisiae contain a major cytosolic cyclophilin (Cyp)-related peptidyl-prolyl cis-trans isomerase (PPIase) which is the target for cyclosporin A (CsA) cytotoxicity and which is encoded by the CYP1 gene [Haendler et al., Gene 83 (1989) 39-46]. We recently identified a second Cyp-related gene in yeast, CYP2 [Koser et al., Nucleic Acids Res. 18 (1990) 1643] which predicts a protein with a hydrophobic leader sequence. A sequence lacking 33 codons from the 5'-end of the CYP2 open reading frame was generated by the polymerase chain reaction and engineered for expression in Escherichia coli. The corresponding recombinant truncated protein was purified and found to exhibit PPIase activity which was inhibited by CsA. The CYP2 gene is genetically unlinked to CYP1. As with CYP1, genomic disruption of CYP2 had no effect on haploid cell viability. Disruption of all three of the known yeast PPIase-encoding genes [CYP1, CYP2, and RBP1 for rapamycin-binding protein; Koltin et al., Mol. Cell. Biol. 11 (1991) 1718-1723] in the same haploid cell also resulted in no apparent cellular phenotype, suggesting either that none of these enzymes have an essential function or that additional PPIases can compensate for their specific absence. Whereas cells containing a genomic disruption of CYP1 exhibited a CsA-resistant phenotype, genomic disruption of CYP2 had no effect on CsA sensitivity. This suggests that the CYP1 gene product is the primary cellular target for CsA toxicity in yeast. Since both purified Cyps display CsA sensitivity in vitro, our data suggest that Cyp1 and Cyp2 differ in terms of their cellular function and/or localization.  相似文献   

3.
Peptidyl-prolyl cis/trans isomerases (PPIases) are enzymes that catalyse protein folding both in vitro and in vivo. We isolated a peptidyl-prolyl cis/trans isomerase (PPIase) which is specifically associated with the 50S subunit of the Escherichia coli ribosome. This association was abolished by adding at least 1.5 M LiCl. Sequencing the N-terminal amino acids in addition to three proteolytic fragments totalling 62 amino acids revealed that this PPIase is identical to the E.coli trigger factor. A comparison of the amino acid sequence of trigger factor with those of other PPIase families shows little similarities, suggesting that trigger factor may represent an additional family of PPIases. Trigger factor was purified to homogeneity on a preparative scale from E.coli and its enzymatic properties were studied. In its activity towards oligopeptide substrates, the trigger factor resembles the FK506-binding proteins (FKBPs). Additionally, the pattern of subsite specificities with respect to the amino acid preceding proline in Suc-Ala-Xaa-Pro-Phe-4-nitroanilides is reminiscent of FKBPs. However, the PPIase activity of the trigger factor was not inhibited by either FK506 or by cyclosporin A at concentrations up to 100 microM. In vitro, the trigger factor catalysed the proline-limited refolding of a variant of RNase T1 much better than all other PPIases that have been examined so far.  相似文献   

4.
Cyclophilins (Cyps) constitute a highly conserved family of proteins present in a wide variety of organisms. Historically, Cyps were first identified by their ability to bind the immunosuppressive agent cyclosporin A (CsA) with high affinity; they later were found to have peptidyl-prolyl cis-trans isomerase (PPIase) activity, which catalyzes the folding of oligopeptides at proline-peptide bonds in vitro and may be important for protein folding in vivo. Cells of Saccharomyces cerevisiae contain at least two distinct Cyp-related PPIases encoded by the genes CYP1 and CYP2. A yeast strain (GL81) containing genomic disruptions of three known yeast PPIase-encoding genes [CYP1, CYP2 and RBP1 (for rapamycin-binding protein); Koltin et al., Mol. Cell. Biol. 11 (1991) 1718-1723] was previously constructed and found to be viable. Soluble fractions of these cells possess residual CsA-sensitive PPIase activity (2-5% of that present in wild-type cells as assayed in vitro). We have purified an approx. 18-kDa protein exhibiting PPIase activity from a soluble fraction of GL81 cells and determined that its N-terminal amino acid (aa) sequence exhibits significant homology (but nonidentity) to the Cyp1 and Cyp2 proteins. We designate the gene for this new protein, CYP3. Using a degenerate oligodeoxyribonucleotide (oligo) based on the N-terminal aa sequence, plus an internal oligo homologous to a conserved region within the portion of CYP1 and CYP2 that had been deleted in the genome, a CYP3-specific DNA fragment was generated by the polymerase chain reaction (PCR) using GL81 genomic DNA as a substrate. This PCR fragment was used as a probe to isolate CYP3 genomic and cDNA clones.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The periplasmic molecular chaperone protein SurA facilitates correct folding and maturation of outer membrane proteins in Gram-negative bacteria. It preferentially binds peptides that have a high fraction of aromatic amino acids. Phage display selections, isothermal titration calorimetry and crystallographic structure determination have been used to elucidate the basis of the binding specificity. The peptide recognition is imparted by the first peptidyl-prolyl isomerase (PPIase) domain of SurA. Crystal structures of complexes between peptides of sequence WEYIPNV and NFTLKFWDIFRK with the first PPIase domain of the Escherichia coli SurA protein at 1.3 A resolution, and of a complex between the dodecapeptide and a SurA fragment lacking the second PPIase domain at 3.4 A resolution, have been solved. SurA binds as a monomer to the heptapeptide in an extended conformation. It binds as a dimer to the dodecapeptide in an alpha-helical conformation, predicated on a substantial structural rearrangement of the SurA protein. In both cases, side-chains of aromatic residues of the peptides contribute a large fraction of the binding interactions. SurA therefore asserts a recognition preference for aromatic amino acids in a variety of sequence configurations by adopting alternative tertiary and quaternary structures to bind peptides in different conformations.  相似文献   

6.
Organophosphorus hydrolase (OPH) from Flavobacterium species is a membrane‐associated homodimeric metalloenzyme and has its own signal peptide in its N‐terminus. We found that OPH was translocated into the periplasmic space when the original signal peptide‐containing OPH was expressed in recombinant Escherichia coli even though its translocation efficiency was relatively low. To investigate the usability of this OPH signal peptide for periplasmic expression of heterologous proteins in an E. coli system, we employed green fluorescent protein (GFP) as a cytoplasmic folding reporter and alkaline phosphatase (ALP) as a periplasmic folding reporter. We found that the OPH signal peptide was able to use both twin‐arginine translocation (Tat) and general secretory (Sec) machineries by switching translocation pathways according to the nature of target proteins in E. coli. These results might be due to the lack of Sec‐avoidance sequence in the c‐region and a moderate hydrophobicity of the OPH signal peptide. Interestingly, the OPH signal peptide considerably enhanced the translocation efficiencies for both GFP and ALP compared with commonly used TorA and PelB signal peptides that have Tat and Sec pathway dependences, respectively. Therefore, this OPH signal peptide could be successfully used in recombinant E. coli system for efficient periplasmic production of target protein regardless of the subcellular localization where functional folding of the protein occurs. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:848–854, 2016  相似文献   

7.
The gene for the soluble cytochrome b562 from Escherichia coli B has been cloned on a SalI fragment. The analysis of the gene reveals the presence of a leader sequence in front of the sequence encoding the mature protein. Expression of cytochrome b562 using the lac-promoter produced the protein to a level of 3-5% of total protein. This over-production enables employment of a simple, high-yield purification protocol to obtain homogeneous cytochrome b562. Spectroscopic and N-terminal sequence analyses of the purified protein demonstrate that it is identical to the chromosomally expressed cytochrome b562 purified and characterized from E. coli B [Itagaki, E. & Hager, L.P. (1966) J. Biol. Chem. 241, 3687-3695]. It is demonstrated that the genomic sequence codes for a classic N-terminal signal sequence and that mature cytochrome b562 is translocated to the periplasmic space.  相似文献   

8.
The production of recombinant proteins in the periplasm of Escherichia coli can be limited by folding problems, leading to periplasmic aggregates. We used a selection system for periplasmic chaperones based on the coexpression of an E. coli library with a poorly expressing antibody single-chain Fv (scFv) fragment displayed on filamentous phage (Bothmann, H., and Plückthun, A. (1998) Nature Biotechnol. 16, 376-380). By selection for a functional antibody, the protein Skp had been enriched previously and shown to improve periplasmic expression of a wide range of scFv fragments. This selection strategy was now repeated with a library constructed from the genomic DNA of an skp-deficient strain, leading to enrichment of the periplasmic peptidylprolyl cis,trans-isomerase (PPIase) FkpA. Coexpression of FkpA increased the amount of fusion protein displayed on the phage and dramatically improved functional periplasmic expression even of scFv fragments not containing cis-prolines. In contrast, the coexpression of the periplasmic PPIases PpiA and SurA showed no increase in the functional scFv fragment level in the periplasm or displayed on phage. Together with the in vitro data in the accompanying paper (Ramm, K., and Plückthun, A. (2000) J. Biol. Chem. 275, 17106-17113), we conclude that the effect of FkpA is independent of its PPIase activity.  相似文献   

9.
Staphylococcus aureus nuclease A hybrid genes, encoding proteins OmpA-nuclease, lipo-nuclease and Pin-nuclease, were cloned downstream of the yeast GAL10 inducible promoter. OmpA-nuclease and lipo-nuclease contain the mature staphylococcal nuclease sequence preceded by the Escherichia coli OmpA and lipoprotein signal sequences, respectively, whereas Pin-nuclease lacks a defined signal sequence at its amino terminus. We found that: (a) the nuclease gene products synthesized in yeast are active, but they do not affect cell growth; (b) OmpA-nuclease and lipo-nuclease are partially processed and constitute approximately 1.0-1.5% of the yeast cell protein; (c) OmpA and lipoprotein signal sequences function similarly in secretion, allowing 35-40% of the processed nuclease to be translocated into the yeast periplasm; and (d) Pin-nuclease, which lacks hydrophobic sequences at its amino-terminus, is accumulated at a level tenfold lower than the hybrid proteins that do contain signal sequences. Nevertheless, 50% of the enzyme activity of Pin-nuclease in yeast is localized in the periplasmic space.  相似文献   

10.
Membrane topology of penicillin-binding protein 3 of Escherichia coli   总被引:12,自引:4,他引:8  
The beta-lactamase fusion vector, pJBS633, has been used to analyse the organization of penicillin-binding protein 3 (PBP3) in the cytoplasmic membrane of Escherichia coli. The fusion junctions in 84 in-frame fusions of the coding region of mature TEM beta-lactamase to random positions within the PBP3 gene were determined. Fusions of beta-lactamase to 61 different positions in PBP3 were obtained. Fusions to positions within the first 31 residues of PBP3 resulted in enzymatically active fusion proteins which could not protect single cells of E. coli from killing by ampicillin, indicating that the beta-lactamase moieties of these fusion proteins were not translocated to the periplasm. However, all fusions that contained greater than or equal to 36 residues of PBP3 provided single cells of E. coli with substantial levels of resistance to ampicillin, indicating that the beta-lactamase moieties of these fusion proteins were translocated to the periplasm. PBP3 therefore appeared to have a simple membrane topology with residues 36 to the carboxy-terminus exposed on the periplasmic side of the cytoplasmic membrane. This topology was confirmed by showing that PBP3 was protected from proteolytic digestion at the cytoplasmic side of the inner membrane but was completely digested by proteolytic attack from the periplasmic side. PBP3 was only inserted in the cytoplasmic membrane at its amino terminus since replacement of its putative lipoprotein signal peptide with a normal signal peptide resulted in a water-soluble, periplasmic form of the enzyme. The periplasmic form of PBP3 retained its penicillin-binding activity and appeared to be truly water-soluble since it fractionated, in the absence of detergents, with the expected molecular weight on Sephadex G-100 and was not retarded by hydrophobic interaction chromatography on Phenyl-Superose.  相似文献   

11.
We have identified a new folding catalyst, PpiD, in the periplasm of Escherichia coli. The gene encoding PpiD was isolated as a multicopy suppressor of surA, a mutation which severely impairs the folding of outer membrane proteins (OMPs). The ppiD gene was also identified based on its ability to be transcribed by the two-component system CpxR-CpxA. PpiD was purified to homogeneity and shown to have peptidyl-prolyl isomerase (PPIase) activity in vitro. The protein is anchored to the inner membrane via a single transmembrane segment, and its catalytic domain faces the periplasm. In addition, we have identified by site-directed mutagenesis some of the residues essential for its PPIase activity. A null mutation in ppiD leads to an overall reduction in the level and folding of OMPs and to the induction of the periplasmic stress response. The combination of ppiD and surA null mutations is lethal. This is the first time two periplasmic folding catalysts have been shown to be essential. Another unique aspect of PpiD is that its gene is regulated by both the Cpx two-component system and the sigma32 heat shock factor, known to regulate the expression of cytoplasmic chaperones.  相似文献   

12.
The nature of molecular chaperones in the periplasm of Escherichia coli that assist newly translocated proteins to reach their native state has remained poorly defined. Here, we show that FkpA, a heat shock periplasmic peptidyl-prolyl cis/trans isomerase (PPIase), suppresses the formation of inclusion bodies from a defective-folding variant of the maltose-binding protein, MalE31. This chaperone-like activity of FkpA, which is independent of its PPIase activity, requires a full-length structure of the protein. In vitro, FkpA does not catalyse a slow rate-limiting step in the refolding of MalE31, but prevents its aggregation at stoichiometric amounts and promotes the reactivation of denaturated citrate synthase. We propose that FkpA functions as a chaperone for envelope proteins in the bacterial periplasm.  相似文献   

13.
The genes encoding amicyanin and the beta-subunit of methylamine dehydrogenase (MADH) from Thiobacillus versutus have been cloned and sequenced. The organization of these genes makes it likely that they are coordinately expressed and it supports earlier findings that the blue copper protein amicyanin is involved in electron transport from methylamine to oxygen. The amino acid sequence deduced from the nucleotide sequence of the amicyanin-encoding gene is in agreement with the published protein sequence. The gene codes for a pre-protein with a 25-amino-acid-long signal peptide. The amicyanin gene could be expressed efficiently in Escherichia coli. The protein was extracted with the periplasmic fraction, indicating that pre-amicyanin is translocated across the inner membrane of E. coli. Sequence studies on the purified beta-subunit of MADH confirm the amino acid sequence deduced from the nucleotide sequence of the corresponding gene. The latter codes for a pre-protein with an unusually long (56 amino acids) leader peptide. The sequencing results strongly suggest that pyrroloquinoline quinone (PQQ) or pro-PQQ is not the co-factor of MADH.  相似文献   

14.
The Escherichia coli periplasmic chaperone and peptidyl-prolyl isomerase (PPIase) SurA facilitates the maturation of outer membrane porins. Although the PPIase activity exhibited by one of its two parvulin-like domains is dispensable for this function, the chaperone activity residing in the non-PPIase regions of SurA, a sizable N-terminal domain and a short C-terminal tail, is essential. Unlike most cytoplasmic chaperones SurA is selective for particular substrates and recognizes outer membrane porins synthesized in vitro much more efficiently than other proteins. Thus, SurA may be specialized for the maturation of outer membrane proteins. We have characterized the substrate specificity of SurA based on its natural, biologically relevant substrates by screening cellulose-bound peptide libraries representing outer membrane proteins. We show that two features are critical for peptide binding by SurA: specific patterns of aromatic residues and the orientation of their side chains, which are found more frequently in integral outer membrane proteins than in other proteins. For the first time this sufficiently explains the capability of SurA to discriminate between outer membrane protein and non-outer membrane protein folding intermediates. Furthermore, peptide binding by SurA requires neither an active PPIase domain nor the presence of proline, indicating that the observed substrate specificity relates to the chaperone function of SurA. Finally, we show that SurA is capable of associating with the outer membrane. Together, our data support a model in which SurA is specialized to interact with non-native periplasmic outer membrane protein folding intermediates and to assist in their maturation from early to late outer membrane-associated steps.  相似文献   

15.
Stymest KH  Klappa P 《The FEBS journal》2008,275(13):3470-3479
One of the rate-limiting steps in protein folding has been shown to be the cis-trans isomerization of proline residues, catalysed by a range of peptidyl prolyl cis-trans isomerases (PPIases). In the periplasmic space of Escherichia coli and other Gram-negative bacteria, two PPIases, SurA and PpiD, have been identified, which show high sequence similarity to the catalytic domain of the small PPIase parvulin. This observation raises a question regarding the biological significance of two apparently similar enzymes present in the same cellular compartment: do they interact with different substrates or do they catalyse different reactions? The substrate-binding motif of PpiD has not been characterized so far, and no biochemical data were available on how this folding catalyst recognizes and interacts with substrates. To characterize the interaction between model peptides and the periplasmic PPIase PpiD from E. coli, we employed a chemical crosslinking strategy that has been used previously to elucidate the interaction of substrates with SurA. We found that PpiD interacted with a range of model peptides independently of whether they contained proline residues or not. We further demonstrate here that PpiD and SurA interact with similar model peptides, and therefore must have partially overlapping substrate specificities. However, the binding motif of PpiD appears to be less specific than that of SurA, indicating that the two PPIases might interact with different substrates. We therefore propose that, although PpiD and SurA have partially overlapping substrate specificities, they fulfil different functions in the cell.  相似文献   

16.
Cells of Escherichia coli take up vitamin B(12) (cyano-cobalamin [CN-Cbl]) and iron chelates by use of sequential active transport processes. Transport of CN-Cbl across the outer membrane and its accumulation in the periplasm is mediated by the TonB-dependent transporter BtuB. Transport across the cytoplasmic membrane (CM) requires the BtuC and BtuD proteins, which are most related in sequence to the transmembrane and ATP-binding cassette proteins of periplasmic permeases for iron-siderophore transport. Unlike the genetic organization of most periplasmic permeases, a candidate gene for a periplasmic Cbl-binding protein is not linked to the btuCED operon. The open reading frame termed yadT in the E. coli genomic sequence is related in sequence to the periplasmic binding proteins for iron-siderophore complexes and was previously implicated in CN-Cbl uptake in SALMONELLA: The E. coli yadT product, renamed BtuF, is shown here to participate in CN-Cbl uptake. BtuF protein, expressed with a C-terminal His(6) tag, was shown to be translocated to the periplasm concomitant with removal of a signal sequence. CN-Cbl-binding assays using radiolabeled substrate or isothermal titration calorimetry showed that purified BtuF binds CN-Cbl with a binding constant of around 15 nM. A null mutation in btuF, but not in the flanking genes pfs and yadS, strongly decreased CN-Cbl utilization and transport into the cytoplasm. The growth response to CN-Cbl of the btuF mutant was much stronger than the slight impairment previously described for btuC, btuD, or btuF mutants. Hence, null mutations in btuC and btuD were constructed and revealed that the btuC mutant had a strong impairment similar to that of the btuF mutant, whereas the btuD defect was less pronounced. All mutants with defective transport across the CM gave rise to frequent suppressor variants which were able to respond at lower levels of CN-Cbl but were still defective in transport across the CM. These results finally establish the identity of the periplasmic binding protein for Cbl uptake, which is one of few cases where the components of a periplasmic permease are genetically separated.  相似文献   

17.
The leucine-specific binding protein (LS-BP), a periplasmic component of the Escherichia coli high-affinity leucine transport system, is initially synthesized in a precursor form with a 23 amino acid N-terminal leader sequence that is removed during secretion of the protein into the periplasm. Using in vitro mutagenesis, deletion mutants of the LS-BP gene have been constructed with altered or missing amino acid sequences in the C-terminal portion of the protein. These altered binding proteins exhibited normal processing and secretion but were rapidly degraded in the periplasmic space. In the presence of an uncoupler of the transmembrane potential (CCCP) the precursor forms accumulated in the membrane and were protected from degradation. The altered binding proteins also were secreted by spheroplasts of E coli, after which they were easily detected.  相似文献   

18.
Peptidyl-prolyl cis/trans isomerases (PPIases) catalyze the isomerization of prolyl peptide bonds. Distinct families of this class of enzymes are involved in protein folding in vitro, whereas their significance in free living organisms is not known. Previously, we inspected the smallest known genome of a self-replicating organism and found that Mycoplasma genitalium is devoid of all known PPIases except the trigger factor. Despite the extensive sequence information becoming available, most genes remain hypothetical and enzyme activities in many species have not been assigned to an open reading frame. Therefore, we studied the PPIase activity in crude extracts of M. genitalium. We showed that this is solely attributed to a single enzyme activity, the trigger factor. Characterization of this enzyme revealed that its PPIase activity resides in a central 12-kDa domain. Only the complete trigger factor is able to cis/trans isomerize extended peptide substrates, while the PPIase domain alone can not. The N- and the C-terminal domains of the trigger factor seem to function in binding of proteins as substrates, as demonstrated by protein refolding experiments, in which the complete trigger factor catalyzed protein refolding towards a model protein 500-fold more efficiently than the isolated central PPIase domain. Protein modeling studies suggest that the PPIase domain can fold in a similar way as the PPIase domain of FK506 binding proteins (FKBPs), one class of PPIases, despite only very limited sequence homology. Differences at the active site explain why this enzyme is not inhibited by FK506 in contrast with FKBPs. Trigger factor expressed in Escherichia coli confirms its additional chaperone functions, as shown by its association with chaperones GroEL and GroES after induction of misfolding. In contrast, the isolated PPIase-domain lacks any association with chaperones from E. coli. In summary, trigger factor of M. genitalium is the single folding isomerase of this organism, which harbors an enzymatically active PPIase domain with structural homology to FKBPs. Its additional domains confer its ability to be an efficient catalyst of protein folding. The protein folding machinery is conserved and shows a dual function as a chaperone and a prolyl isomerase.  相似文献   

19.
Recently, we have identified a novel topogenic sequence at the C terminus of Escherichia coli haemolysin (HlyA) which is essential for its efficient secretion into the medium. This discovery has introduced the possibility of using this secretion system for the release of chimeric proteins from E. coli directly into the medium. We have now successfully fused this C-terminal signal to a hybrid protein containing a few residues of beta-galactosidase and the majority of the E. coli outer membrane porin OmpF lacking its own N-terminal signal sequence. We find that this chimeric protein is specifically translocated across the inner and outer membranes and is released into the medium. In addition, we have further localized the HlyA secretion signal to the final 113 amino acids of the C terminus. In fact, a specific secretion signal appears to reside at least in part within the last 27 amino acids of HlyA.  相似文献   

20.
A 1.7 kilobase HindIII fragment of Saccharomyces cerevisiae DNA was cloned by cross-hybridization with the Escherichia coli secY gene. The complete nucleotide sequence of the 2.6 kb fragment of the yeast genomic DNA containing the cross-hybridizing HindIII fragment was determined. The sequence showed no apparent similarity with that of the E. coli secY gene with the exception of a completely matched sequence of 21 bp, but it contained a 1,623 nucleotide open reading frame coding for a protein of 541 amino acids with a calculated Mr of 59,600. The N-terminal portion of 303 residues of the predicted sequence was homologous to the cytosolic domain of the alpha-subunit of the signal recognition particle receptor (SR alpha), including consensus sequence elements for a GTP binding site, whereas the C-terminal portion of 238 residues had an unusual methionine-rich domain containing several repetitive sequences. An mRNA of 2.0 kb was detected on Northern blotting analysis. The predicted sequence was 48% identical with the reported sequences of the 54K subunit of the mammalian signal recognition particle (SRP54) (Romisch K. et al. (1989) Nature 340, 478-483; Bernstein, H.D. et al. (1989) Nature 340, 482-486). We designated this gene as SRH1 (SRP54 homologue). Gene disruption experiments showed that the SRH1 gene product is essential for cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号