首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A phospholipid vesicle encapsulating hemoglobin (Hb vesicle, HbV) has been developed to provide O(2)-carrying capacity to plasma expanders. Its ability to restore systemic and microcirculatory conditions after hemorrhagic shock was evaluated in the dorsal skinfold window preparation of conscious hamsters. The HbV was suspended in 8% human serum albumin (HSA) at Hb concentrations of 3.8 g/dl [HbV(3.8)/HSA] and 7.6 g/dl [HbV(7.6)/HSA]. Shock was induced by 50% blood withdrawal, and mean arterial pressure (MAP) at 40 mmHg was maintained for 1 h by the additional blood withdrawal. The hamsters receiving either HbV(3.8)/HSA or HbV(7.6)/HSA suspensions restored MAP to 93 +/- 14 and 93 +/- 10 mmHg, respectively, similar with those receiving the shed blood (98 +/- 13 mmHg), which were significantly higher by comparison with resuscitation with HSA alone (62 +/- 12 mmHg). Only the HSA group tended to maintain hyperventilation and negative base excess after the resuscitation. Subcutaneous microvascular blood flow reduced to approximately 10-20% of baseline during shock, and reinfusion of shed blood restored blood flow to approximately 60-80% of baseline, an effect primarily due to the sustained constriction of small arteries A(0) (diameter 143 +/- 29 microm). The HbV(3.8)/HSA group had significantly better microvascular blood flow recovery and nonsignificantly better tissue oxygenation than of the HSA group. The recovery of base excess and improved tissue oxygenation appears to be primarily due to the increased oxygen-carrying capacity of HbV fluid resuscitation.  相似文献   

2.
Isovolemic hemodilution to 11% systemic hematocrit was performed in the hamster window chamber model using 6% dextran 70 kDa (Dx 70) and 5% human serum albumin (HSA). Systemic and microvascular effects of these solutions were compared with polyethylene glycol (PEG)-conjugated 5% albumin (MPA) and PEG-conjugated 4.2% Hb (MP4). These studies were performed for the purpose of comparing systemic and microvascular responses of PEG vs. non-PEG plasma expanders and similar oxygen-carrying vs. noncarrying blood replacement fluids. Mean arterial blood pressure was statistically significantly reduced for all groups compared with baseline (P < 0.05), HSA, MPA, and MP4 higher than Dx 70 (P < 0.05). MP4 and MPA had a significantly higher cardiac index than HSA and Dx 70, in addition to a positive base excess. Microvascular blood flow and capillary perfusion were significantly higher for the PEG compounds compared with HSA and Dx 70. Intravascular PO2 for MP4 and MPA was higher in arterioles (P < 0.05) compared with HSA and Dx 70, but there was no difference in either tissue or venular PO2 between groups. Total Hb in the MP4 group was 4.8 +/- 0.4 g/dl, whereas the remaining groups had a range of 3.6-3.8 g/dl. The hemodilution results showed that PEG compounds maintained microvascular conditions with lower concentrations than conventional plasma expanders. Furthermore, microvascular oxygen delivery and extraction in the window chamber tissue were significantly higher for the PEG compounds. MP4 was significantly higher than MPA (P < 0.05) and was not statistically different from baseline, an effect due to the additional oxygen release to the tissue by the Hb MP4.  相似文献   

3.
We have studied the effects of the interaction of radiation generated human serum albumin radicals (HSA*) with human hemoglobin molecules (Hb). Diluted Hb aqueous solutions were irradiated under N2O or argon without HSA and in the presence of HSA. Analysis of Hb absorbance spectra in the visible range, cross-linking of HSA* radicals with Hb molecules and functional properties of Hb were investigated. The degree of Hb destruction estimated on the basis of changes in the absorption spectra indicated that the effectiveness of HSA* radicals generated under N2O for Hb destruction was approximately equal to that of *OH radicals. In this case mainly *OH radicals formed the secondary HSA* radicals. However, during the irradiation Hb + HSA under argon the presence of equivalent amounts of oxidizing and reducing products of water radiolysis lowers the degree of Hb destruction. Some reactions of HSA* radicals with Hb molecules lead to the formation of covalent bonds between the molecules of both proteins. The following types of hybrids could be distinguished: Hb monomer-HSA, Hb dimer-HSA and higher aggregates. Structural changes of Hb by HSA* radicals were reflected by alterations in the oxygen affinity (increase) and cooperativity (decrease) of Hb. The results obtained indicate that in the experimental systems studied, the HSA* radical reactions with Hb molecules are favoured over recombination reactions of HSA* radicals. On this basis one can suggest that in the studied systems Hb plays the role of an acceptor of radical energy located on HSA.  相似文献   

4.
Hemoglobin (Hb) vesicles (particle diameter, ca. 250 nm) have been developed as Hb-based oxygen carriers in which a purified Hb solution is encapsulated with a phospholipid bilayer membrane. The oxidation of Hb to nonfunctional ferric Hb (metHb) was caused by reactive oxygen species, especially hydrogen peroxide (H(2)O(2)), in vivo in addition to autoxidation. We focused on the enzymatic elimination of H(2)O(2) to suppress the metHb formation in the Hb vesicles. In this study, we coencapsulated catalase with Hb within vesicles and studied the rate of metHb formation in vivo. The Hb vesicles containing 5.6 x 10(4) unit mL(-1) catalase decreased the rate of metHb formation by half in comparison with Hb vesicles without catalase. We succeeded in prolonging the oxygen-carrying ability of the Hb vesicle in vivo by the coencapsulation of catalase.  相似文献   

5.
This work describes the development of polymersome-encapsulated hemoglobin (PEH) self-assembled from biodegradable and biocompatible amphiphilic diblock copolymers composed of poly(ethylene oxide) (PEO), poly(caprolactone) (PCL), and poly(lactide) (PLA). In the amphiphilic diblock, PEO functions as the hydrophilic block, while either PCL or PLA can function as the hydrophobic block. PEO, PCL, and PLA are biocompatible polymers, while the last two polymers are biodegradable. PEH dispersions were prepared by extrusion through 100 nm pore radii polycarbonate membranes. In this work, the encapsulation efficiency of human and bovine hemoglobin (hHb and bHb) in polymersomes was adjusted by varying the initial concentration of Hb. This approach yielded Hb loading capacities that were comparable to values in the literature that supported the successful resuscitation of hamsters experiencing hemorrhagic shock. Moreover, the Hb loading capacities of PEHs in this study can also be tailored simply by controlling the diblock copolymer concentration. In this study, typical Hb/diblock copolymer weight ratios ranged 1.2-1.5, with initial Hb concentrations less than 100 mg/mL. The size distribution, Hb encapsulation efficiency, oxygen affinity (P 50), cooperativity coefficient (n), and methemoglobin (metHb) level of these novel PEH dispersions were consistent with values required for efficient oxygen delivery in the systemic circulation. Taken together, our results demonstrate the development of novel PEH dispersions that are both biocompatible and biodegradable. These novel dispersions show very good promise as therapeutic oxygen carriers.  相似文献   

6.
Hemorrhagic shock alters heterogeneity of regional myocardial perfusion (RMP) in the presence of critical coronary stenosis in pigs. Conventional resuscitation has failed to reverse these effects. We hypothesized that improvement of the resuscitation regime would lead to restoration of RMP heterogeneity. Diaspirin-cross-linked hemoglobin (10 g/dl; DCLHb) and human serum albumin (8.0 g/dl; HSA) were used. After baseline, a branch of the left coronary artery was stenosed; thereafter, hemorrhagic shock was induced. Resuscitation was performed with either DCLHb or HSA. At baseline, the fractcal dimension (D) of subendocardial myocardium was 1.31 +/- 0.083 (HSA) and 1.35 +/- 0.106 (DCLHb) (mean +/- SD). Coronary stenosis increased subendocardial D slightly but consistently only in the DCLHb group (1.39 +/- 0.104; P < 0.05). Shock reduced subendocardial D: 1.21 +/- 0.093 (HSA; P = 0.10), 1.25 +/- 0.092 (DCLHb; P < 0.05). Administration of DCLHb increased subendocardial D in 7 of 10 animals (1.31 +/- 0.097; P = 0.066). HSA was ineffective in this respect. DCLHb infusion restored arterial pressure and increased cardiac index (CI) to 80% of baseline values. Administration of HSA left animals hypotensive (69 mmHg) and increased CI to 122% of the average baseline value. Shock-induced disturbances of the distribution of RMP were improved by administration of DCLHb but not by HSA.  相似文献   

7.
Hemorrhagic shock, often a result of traumatic injury, is a condition of reduced perfusion that results in diminished delivery of oxygen to tissues. The disruption in oxygen delivery induced by both ischemia (diminished oxygen delivery) and reperfusion (restoration of oxygen delivery) has profound consequences for cellular metabolism and the maintenance of homeostasis. The pathophysiologic state associated with traumatic injury and hemorrhagic shock was studied with a scale-invariant metabolic network. Urinary metabolic profiles were constructed from NMR spectra of urine samples collected at set timepoints in a porcine model of hemorrhagic shock that included a pulmonary contusion, a liver crush injury, and a 35 % controlled bleed. The network was constructed from these metabolic profiles. A partial least squares discriminant analysis (PLS-DA) model that discriminates by experimental timepoint was also constructed. Comparisons of the network (functional relationships among metabolites) and PLS-DA model (observable relationships to experimental time course) revealed complementary information. First, ischemia/reperfusion injury and evidence of cell death due to hemorrhage was associated with early resuscitation timepoints. Second, evidence of increased protein catabolism and traumatic injury was associated with late resuscitation timepoints. These results are concordant with generally accepted views of the metabolic progression of shock.  相似文献   

8.
A S Rudolph 《Cryobiology》1988,25(4):277-284
In this report, the ability of carbohydrates (trehalose, sucrose, and glucose) to preserve the blood substitute liposome-encapsulated hemoglobin (LEH) in the freeze-dried state is examined. The water-free stabilization of individual components of this blood substitute and LEH is reported. Lyophilization of hemoglobin solutions in the absence of carbohydrates results in significant oxidative degradation of Hb as measured by a large increase (approximately 60%) in methemoglobin. Hb samples lyophilized in increasing carbohydrate concentrations show reduced levels of methemoglobin, and at 0.5 M trehalose, sucrose, or glucose, these levels are reduced to nearly the same levels as unlyophilized controls. Storage of lyophilized Hb samples following rehydration at 4 degrees C shows the same rate of methemoglobin formation regardless of whether carbohydrates are present. This suggests that carbohydrates prevent Hb oxidation in the dry state but are less effective at retarding oxidative damage to Hb in solution. The addition of 0.25 M trehalose or sucrose to LEH results in the maintenance of liposomal size following lyophilization. In these experiments, glucose was least effective at inhibiting dehydration-induced LEH fusion. Lyophilization of LEH in 0.25 M trehalose or sucrose also results in significantly greater retention of the encapsulated hemoglobin following lyophilization and rehydration. These results suggest that the long-term stabilization of LEH in the dry state is a realizable goal.  相似文献   

9.
A S Rudolph  R O Cliff 《Cryobiology》1990,27(6):585-590
We have previously demonstrated the stabilization of liposome-encapsulated hemoglobin (LEH) by lyophilization (Cryobiology 25, 277-284, 1988). In the present report, we examine the structural and functional recovery of LEH after 3 months in the dry state. We have investigated the incorporation of the protective carbohydrate trehalose in the production and preservation of lyophilized LEH. Vesicle size, retention of entrapped hemoglobin, oxygen-carrying capacity, and percentage methemoglobin were measured as a function of time stored in the dry state under vacuum at room temperature. The results indicate that 150-300 mM trehalose maintains LEH dry preparations with little change in their size or functional characteristics after 3 months in the dry state. These results are compared to those of LEH that has been stored hydrated at 4 degrees C for the same time period.  相似文献   

10.
Human serum albumin (HSA) nanoparticles emerge as promising carriers for drug delivery. Among challenges, one important issue is the design of HSA nanoparticles with a low mean size of ca. 50?nm and having a high drug payload. The original strategy developed here is to use sacrificial mesoporous nanosilica templates having a diameter close to 30?nm to drive the protein nanocapsule formation. This new approach ensures first an efficient high drug loading (ca. 30%) of Doxorubicin (DOX) in the porous silica by functionalizing silica with an aminosiloxane layer and then allows the one-step adsorption and the physical cross-linking of HSA by modifying the silica surface with isobutyramide (IBAM) groups. After silica template removal, homogenous DOX-loaded HSA nanocapsules (30–60?nm size) with high drug loading capacity (ca. 88%) are thus formed. Such nanocapsules are shown efficient in multicellular tumor spheroid models (MCTS) of human hepatocarcinoma cells by their significant growth inhibition with respect to controls. Such a new synthesis approach paves the way toward new protein based nanocarriers for drug delivery.  相似文献   

11.
Hemoglobin (Hb)‐based oxygen carriers (HBOCs) have been used as blood substitutes in surgery medicine and oxygen therapeutics for ischemic stroke. As a potent HBOC, the PEGylated Hb has received much attention for its oxygen delivery and plasma expanding ability. Two PEGylated Hbs, Euro‐Hb, and MP4 have been developed for clinical trials, using human adult hemoglobin (HbA) as the original substrate. However, HbA was obtained from outdated human blood and its quantity available from this source may not be sufficient for mass production of PEGylated HbA. In contrast, bovine Hb (bHb) has no quantity constraints for its ample resource. Thus, bHb is of potential to function as an alternative substrate to obtain a PEGylated bHb (bHb‐PEG). bHb‐PEG was prepared under the same reaction condition as HbA‐PEG, using maleimide chemistry. The structural, functional, solution and physiological properties of bHb‐PEG were determined and compared with those of HbA‐PEG. bHb‐PEG showed higher hydrodynamic volume, colloidal osmotic pressure, viscosity and P50 than HbA‐PEG. The high P50 of bHb can partially compensate the PEGylation‐induced perturbation in the R to T state transition of HbA. bHb‐PEG was non‐vasoactive and could efficiently recover the mean arterial pressure of mice suffering from hemorrhagic shock. Thus, bHb‐PEG is expected to function as a potent HBOC for its high oxygen delivery and strong plasma expanding ability. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:252–260, 2017  相似文献   

12.
A series of hemoglobin (Hb)-based O(2) carriers, acellular and cellular types, were synthesized and their physicochemical characteristics were compared. The acellular type includes intramolecularly cross-linked Hb (XLHb), polyoxyethylene (POE)-conjugated pyridoxalated Hb (POE-PLP-Hb), hydroxyethylstarch-conjugated Hb (HES-XLHb), and glutaraldehyde-polymerized XLHb (Poly-XLHb). The cellular type is Hb-vesicles (HbV) of which the surface is modified with POE (POE-HbV). Their particle diameters are 7 +/- 2, 22 +/- 2, 47 +/- 17, 68 +/- 24, and 224 +/- 76 nm, respectively, thus all the materials penetrate across membrane filters with 0.4 microm pore size, though only the POE-HbV cannot penetrate across the filter with 0.2 microm pore size. These characteristics of permeability are important to consider an optimal particle size in microcirculation in vivo. POE-PLP-Hb ([Hb] = 5 g/dL) showed viscosity of 6.1 cP at 332 s(-1) and colloid osmotic pressure (COP) of 70.2 Torr, which are beyond the physiological conditions (human blood, viscosity = 3-4 cP, COP = ca. 25 Torr). XLHb and Poly-XLHb showed viscosities of 1.0 and 1.5 cp, respectively, which are significantly lower than that of blood. COP of POE-HbV is regulated to 20 Torr in 5% human serum albumin (HSA). HES-XLHb and POE-HbV/HSA showed comparable viscosity with human blood. Microscopic observation of human red blood cells (RBC) after mixing blood with POE-PLP-Hb or HES-XLHb disclosed aggregates of RBC, a kind of sludge, indicating a strong interaction with RBC, which is anticipated to modify peripheral blood flow in vivo. On the other hand, XLHb and POE-HbV showed no rouleaux or aggregates of RBC. The acellular Hbs (P(50) = 14-32 Torr) have their specific O(2) affinities determined by their structures, while that of the cellular POE-HbV is regulated by coencapsulating an appropriate amount of an allosteric effector (e.g., P(50) = 18, 32 Torr). These differences in physicochemical characteristics between the acellular and cellular types indicate the advantages of the cellular type from the physiological points of view.  相似文献   

13.
The search for effective drug delivery systems is one of the major challenges in drug formulation especially for biopharmaceuticals such as proteins, and peptide-based drugs and vaccines. A procedure has been developed whereby human serum albumin (HSA) can be used as a delivery vehicle for these biomolecules using its role as main fatty acid carrier. Using essentially fatty acid free HSA (HSAff) it is possible to form stable complexes with lipidic chain compounds (lipo-compounds). Two lipo-compounds have been used to develop this system, a novel antimicrobial lipopeptide and γ-amino-n-butyric acid, GABA, conjugated with an alkyl chain, lipo-GABA, in both cases C8 and C14 alkyl chain lengths were evaluated. The HAS–lipo compound complex had a mutual stabilizing effect on both the HSA and the lipo-compound. The protease enzyme study showed that the alkyl chains of these lipo-compounds bound to HSAff confer a similar if not greater biostability than caprylic acid shown by CD and importantly, the bound lipopeptide was stabilized by the HSA shown by mass spectrometry. Heat stability studies at 60°C over 10 h also confirmed that the lipo-HSA complexes confer stability and provide a method of preparing sterile formulation for therapeutic use. No further increased in stability of the lipo-compounds when HSA containing fatty acid (HSAfa) was used. With the antimicrobial lipopeptide, there was enhanced activity with HSAff formulation suggesting increased biostability and bioavailability of compounds. These finding allowed us to develop a simple and effective way of delivering lipo-compounds using fatty acid free HSA as the carrier.Australian Peptide Conference Issue.  相似文献   

14.
Functional activity of the solutions of chemically modified hemoglobins (Hb) with different structure had been investigated during the replacement of acute fatal blood loss in dogs. It was found the correlation between polymerization degree of Hb derivatives and alterations of its oxygen-carrying characteristics in the process of circulation. It was shown that decline of functional activity at the prolonged terms of circulation was more expressed for macromolecular Hb derivatives with heterogeneous structure. Therefore chemically modified Hb free from high molecular weight fractions may be considered as a potential oxygen-carrying fluids, because they are capable of more effective support of the oxygen transport level in the organism.  相似文献   

15.
The importance of cysteine (Cys) and methionine (Met) residues for the antioxidant activity of human serum albumin (HSA) was investigated using recombinant HSA mutants, in which Cys34 and/or the six Met residues had been mutated to Ala. The scavenging activities of the mutants against five reactive oxygen and nitrogen species were evaluated by a chemiluminescence assay, electron paramagnetic resonance spectroscopy, or a HPLC-flow reactor assay. Our results showed that the contributions of Cys34 and the Met residues to the antioxidant activity of HSA were 61% and 29% against O(2)(?-), 68% and 61% against H(2)O(2), 38% and 6% against HO(?), 36% and 13% against HOCl, and 51% and 1% against (?)NO, respectively. Thus, the findings propose in a direct way that Cys34 plays a more important role than the Met residues in the antioxidant activity of HSA.  相似文献   

16.
《Process Biochemistry》2007,42(3):303-309
Human serum albumin (HSA) and bovine hemoglobin (Hb) conjugate is a promising candidate as a blood substitute. However, preparation of the conjugate is problematic because both proteins tend to conjugate between themselves rather than crosslink each other. In this work, a facile process for conjugation of Hb and HSA was developed through control strategy of the reaction. The reaction was carried out in a buffer containing borax-borate and mannite. The borax-borate was used for pH buffering while mannite was used as a pH switch and a reaction promoter. As a result, self-conjugation of Hb and self-conjugation of HSA were minimized. After the one-step conjugation reaction in aqueous solution, followed by the one-step purification by ion-exchange chromatography, the conjugate of HSA and Hb was obtained with the total yield about 50%. The P50 and the Hill coefficient for the product were 16.1 mmHg and 1.82, respectively.  相似文献   

17.
In a recent study, ultrahigh molecular weight (Mw ) glutaraldehyde-polymerized bovine hemoglobins (PolybHbs) were synthesized with low O2 affinity and exhibited no vasoactivity and a slight degree of hypertension in a 10% top-load model.(1) In this work, we systematically investigated the effect of varying the glutaraldehyde to hemoglobin (G:Hb) molar ratio on the biophysical properties of PolybHb polymerized in either the low or high O2 affinity state. Our results showed that the Mw of the resulting PolybHbs increased with increasing G:Hb molar ratio. For low O2 affinity PolybHbs, increasing the G:Hb molar ratio reduced the O2 affinity and CO association rate constants in comparison to bovine hemoglobin (bHb). In contrast for high O2 affinity PolybHbs, increasing the G:Hb molar ratio led to increased O2 affinity and significantly increased the CO association rate constants compared to unmodified bHb and low O2 affinity PolybHbs. The methemoglobin level and NO dioxygenation rate constants were insensitive to the G:Hb molar ratio. However, all PolybHbs displayed higher viscosities compared to unmodified bHb and whole blood, which also increased with increasing G:Hb molar ratio. In contrast, the colloid osmotic pressure of PolybHbs decreased with increasing G:Hb molar ratio. To preliminarily evaluate the ability of low and high O2 affinity PolybHbs to potentially oxygenate tissues in vivo, an O2 transport model was used to simulate O2 transport in a hepatic hollow fiber (HF) bioreactor. It was observed that low O2 affinity PolybHbs oxygenated the bioreactor better than high O2 affinity PolybHbs. This result points to the suitability of low O2 affinity PolybHbs for use in tissue engineering and transfusion medicine. Taken together, our results show the quantitative effect of varying the oxygen saturation of bHb and G:Hb molar ratio on the biophysical properties of PolybHbs and their ability to oxygenate a hepatic HF bioreactor. We suggest that the information gained from this study can be used to guide the design of the next generation of hemoglobin-based oxygen carriers (HBOCs) for use in tissue engineering and transfusion medicine applications.  相似文献   

18.
We have measured regional pulmonary blood flow (PBF) in normal dogs with positron emission tomography (PET) and 15O-labeled water (H2(15)O). The method is nondestructive, quantitative, and repeatable. To measure PBF, PET is used to measure both the initial and equilibrium distribution of lung activity after H2(15)O infusion. The data are then interpreted with a one-compartment mathematical model. Measurements of PBF in dogs with H2(15)O (PBF-water) were compared with PBF measured with 68Ga microspheres (PBF-MS), and a close correlation was observed: PBF-water = 0.82 PBF-MS + 25.4 (R = 0.97, n = 52). In another set of animals an important assumption of the method, namely that the tracer is fully extracted during a single pass through the lung, was demonstrated using a single-probe residue-detection technique. Computer simulations were performed to illustrate the sensitivity of the method to errors in the measured variables of tracer activity or tissue-blood partition coefficient. Results showed only small error magnification for the range of values observed in these studies.  相似文献   

19.
Bovine and human hemoglobin (Hb) form the basis for many different types of Hb-based O(2) carriers (HBOCs) ranging from chemically modified Hbs to particle encapsulated Hbs. Hence, the development of a facile purification method for preparing ultrapure Hb is essential for the reliable synthesis and formulation of HBOCs. In this work, we describe a simple process for purifying ultrapure solutions of bovine and human Hb. Bovine and human red blood cells (RBCs) were lyzed, and Hb was purified from the cell lysate by anion exchange chromatography. The initial purity of Hb fractions was analyzed by SDS-PAGE. Pure Hb fractions (corresponding to a single band on the SDS-PAGE gel) were pooled together and the overall purity and identity assessed by LC-MS. LC-MS analysis yielded two peaks corresponding to the calculated theoretical molecular weight of the alpha and beta chains of Hb. The activity of HPLC pure Hb was assessed by measuring its oxygen affinity, cooperativity and methemoglobin level. These measures of activity were comparable to values in the literature. Taken together, our results demonstrate that ultrapure Hb (electrophoresis and HPLC pure) can be easily prepared via anion exchange chromatography. In general, this method can be more broadly applied to purify hemoglobin from any source of RBC. This work is significant, since it outlines a simple method for generating ultrapure Hb for synthesis and/or formulation of HBOCs.  相似文献   

20.
Hemoglobin (Hb) solution-based blood substitutes are being developed as oxygen-carrying agents for the prevention of ischemic tissue damage and low blood volume-shock. However, the cell-free Hb molecule has intrinsic toxicity to the tissue since harmful reactive oxygen species (ROS) are readily produced during autoxidation of Hb from the ferrous state to the ferric state, and the cell-free Hb also causes distortion in the oxidant/antioxidant balance in the tissues. There may be further hindering dangers in the use of free Hb as a blood substitute. It has been reported that Hb has peroxidase-like activity oxidizing peroxidase substrates such as aromatic amines. Here we observed the Hb-catalyzed ROS production coupled to oxidation of a neurotransmitter precursor, beta-phenylethylamine (PEA). Addition of PEA to Hb solution resulted in generation of superoxide anion (O2*-). We also observed that PEA increases the Hb-catalyzed monovalent oxidation of ascorbate to ascorbate free radicals (Asc'). The O2*- generation and Asc formation were detected by O2*--specific chemiluminescence of the Cypridina lucigenin analog and electron spin resonance spectroscopy, respectively. PEA-dependent O2*- production and monovalent oxidation of ascorbate in the Hb solution occurred without addition of H2O2, but a trace of H2O2 added to the system greatly increased the production of both O2*- and Asc*. Addition of GSH completely inhibited the PEA-dependent production of O2*- and Asc* in Hb solution. We propose that the O2*- generation and Asc* formation in the Hb solution are due to the pseudoperoxidase activity-dependent oxidation of PEA and resultant ROS may damage tissues rich in monoamines, if the Hb-based blood substitutes were circulated without addition of ROS scavengers such as thiols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号