首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Prior studies have shown a preferential decondensation (or fragmentation) of the heterochromatic long arm of the X chromosome of Chinese hamster ovary cells when treated with carcinogenic crystalline NiS particles (crNiS). In this report, we show that the heterochromatic regions of mouse chromosomes are also more frequently involved in aberrations than euchromatic regions, although the heterochromatin in mouse cells is restricted to centromeric regions. We also present the karyotypic analyses of four cell lines derived from tumors induced by leg muscle injections of crystalline nickel sulfide which have been analyzed to determine whether heterochromatic chromosomal regions are preferentially altered in the transformed genotypes. Common to all cell lines was the presence of minichromosomes, which are acrocentric chromosomes smaller than chromosome 19, normally the smallest chromosome of the mouse karyotype. The minichromosomes were present in a majority of cells of each line although the morphology of this extra chromosome varied significantly among the cell lines. C-banding revealed the presence of centromeric DNA and thus these minichromosomes may be the result of chromosome breaks at or near the centromere. In three of the four lines a marker chromosome could be identified as a rearrangement between two chromosomes. In the fourth cell line a rearranged chromosome was present in only 15% of the cells and was not studied in detail. One of the three major marker chromosomes resulted from a centromeric fusion of chromosome 4 while another appeared to be an interchange involving the centromere of chromosome 2 and possibly the telomeric region of chromosome 17. The third marker chromosome involves a rearrangement between chromosome 4 near the telomeric region and what appears to be the centromeric region of chromosome 19. Thus, in these three major marker chromosomes centromeric heterochromatic DNA is clearly implicated in two of the rearrangements and less clearly in the third. The involvement of centromeric DNA in the formation of even two of four markers is consistent with the previously observed preference in the site of action of crNiS for heterochromatic DNA during the early stages of carcinogenesis.  相似文献   

2.
The karyotype structure was studied for three cell lines obtained from cells of transgenic murine embryos at early stages of their establishment. The first line was obtained from a transgenic embryonic explantant containing oncogen v-sis under promotor MMTV, two other lines originated from cells of transgenic embryos containing oncogen k51. The karyotypic analysis of G-banded metaphase chromosomes revealed deviations from the normal mouse karyotype as early as by the third passage of cultivation of independent embryonic cell lines that contained a foreign oncogene in their genome. The repeated analysis that involved 15-22 passages revealed similar abnormalities: variability and progression in chromosome number with the appearance of hyperpolyploid combinations, and a large number of rearranged chromosomes, both marker and unique ones. It is concluded that introduction of a foreign oncogene into murine cell genome leads to its enhanced and progressive non-specific destabilization. Oncogen v-sis produces a more valuable karyotype destabilization than oncogen k51.  相似文献   

3.
Eighteen Abelson virus-transformed immature B cell lines were established and immunoglobulin biosynthesis, expression of a B lymphocyte antigen detected by a monoclonal antibody, and rearrangement of immunoglobulin genes in these cell lines were studied. Only one cell line (A1) synthesized micro-chains but no light chains, and the other cell lines synthesized no detectable immunoglobulins. None of the cell lines established had detectable membrane-associated IgM. Fifteen cell lines expressed a B lymphocyte antigen on their cell surfaces. In three cell lines, however, the majority (greater than 99%) of cells did not express this antigen. Heavy chain genes were rearranged on both chromosomes in all the cell lines, although one heavy chain gene was deleted in three cell lines. In 12 of 18 cell lines, one or both kappa-chain genes were rearranged. In six cell lines, however, both kappa-chain genes remained in embryonic form; lambda-chain genes were in embryonic form in all the cell lines. These results suggested the hierarchy of Ig gene rearrangements, beginning with mu and proceeding to kappa and then to lambda. JH rearrangement was also shown to precede the appearance of a B lymphocyte antigen. In three cell lines (A1-A3), which were considered subclones derived from a single common precursor, it was suggested that one rearranged JH gene was functional, and the other was nonfunctional, indicating that allelic exclusion already operated in pre-B cells.  相似文献   

4.
M Ray 《Cytobios》1986,48(193):85-95
Replication patterns of the normal male Chinese hamster chromosomes and the three cell lines CHW, 1102 and 1103, were determined using fluorescent, plus Giemsa or acridine orange, techniques. The individual chromosomes or chromosomal segments were consistent in the replication patterns of normal Chinese hamster chromosomes and all the transformed cell lines. Late DNA replication was regularly identified in the long arm of the X chromosome, the entire Y chromosome, the short arms of chromosomes 6 and 7, and the paracentromeric regions of chromosomes 8, 9 and 10. A similar consistency was demonstrated in the large late replicating areas of chromosomes X and Y. Each cell line had specific marker chromosomes by which the cell line was identified and their replication patterns have been described. The chromosome analysis in cell line 1103 indicated that chromosomes 2, 3, 8 and 9 were more stable than others, of which chromosome 2 was extremely stable. The markers M4 and M5 in cell line 1103 are very interesting. The cytogenetic behaviour of marker M4 indicated a new phenomenon of translocation by simple association. The marker chromosome M5 indicated that inactivation spread to the early replicating distal region. These cell lines are very useful tools for studying replication patterns and providing a basic understanding of mammalian cytogenetics.  相似文献   

5.
Using the C-method of chromosome staining four marker chromosomes were revealed in the transplanted murine line SC-1, one comparatively rare marker chromosome was shown in RAG line, small marker chromosomes occurred almost in all cells of RVP3 line. Marker chromosomes found in the studied lines by the C-method of chromosome staining make it possible to distinguish these lines from each other.  相似文献   

6.
7.
Numerical and structural chromosome analysis of a human retroperitoneal liposarcoma cell line maintained under standard cell culture conditions revealed a very stable hypodiploid mode. If the cells were not trypsinized for several generations, a near-triploid stemline, which was generally a duplication of the hypodiploid mode, emerged. Some chromosomes appeared to be relatively stable pairs (1, 2, 7, 9, and 12), but most had "lost" one homolog or both (4 and 21) or were rearranged into "new" marker chromosomes. Quantitation of the genetic material showed a loss of 12.0 +/- 3.7% per spread. Only one characteristically long marker chromosome, which is present in every cell, could be identified with certainty as a translocation between chromosomes 4 and 11. Several of the marker chromosomes showed interstitial negatively staining regions with the trypsin-Giemsa method.  相似文献   

8.
Transformation of peripheral blood lymphocytes by co-incubation with EBV produces B lymphoblastoid cell lines, but rearrangement of TCR beta-chain genes was observed in three different cell lines derived from two individuals. Because rearrangement of TCR genes in B lymphocytes is considered a rare event, these B lymphoblastoid cell lines with rearranged TCR beta-genes were examined in detail to determine whether there were any additional characteristics to distinguish them from B lymphoblastoid cell lines with germ-line TCR beta-genes. All B lymphoblastoid cell lines contained rearranged Ig H and kappa L chain genes, secreted Ig, and expressed B and not T cell surface markers. Cell lines with rearranged TCR beta-genes had rearranged both IgH genes and had rearranged and subsequently deleted both kappa C region genes. Furthermore all three B lymphoblastoid cell lines with rearranged TCR beta-genes produced small amounts of Ig with lambda-L chains. Although the cellular mechanisms maintaining lineage-specific rearrangement events remain unknown, extensive Ig gene rearrangement and inefficient Ig production by B cells may be indicators of a cellular status where normally stringent lineage-specific control elements fail to function efficiently.  相似文献   

9.
Chinese hamster ovary (CHO) cells have frequently been used in biotechnology for many years as a mammalian host cell platform for cloning and expressing genes of interest. A detailed physical chromosomal map of the CHO DG44 cell line was constructed by fluorescence in situ hybridization (FISH) imaging using randomly selected 303 BAC clones as hybridization probes (BAC-FISH). The two longest chromosomes were completely paired chromosomes; other chromosomes were partly deleted or rearranged. The end sequences of 624 BAC clones, including 287 mapped BAC clones, were analyzed and 1,119 informative BAC end sequences were obtained. Among 303 mapped BAC clones, 185 clones were used for BAC-FISH analysis of CHO K1 chromosomes and 94 clones for primary Chinese hamster lung cells. Based on this constructed physical map and end sequences, the chromosome rearrangements between CHO DG44, CHO K1, and primary Chinese hamster cells were investigated. Among 20 CHO chromosomes, eight were conserved without large rearrangement in CHO DG44, CHO K1, and primary Chinese hamster cells. This result suggested that these chromosomes were stable and essential in CHO cells and supposedly conserved in other CHO cell lines.  相似文献   

10.
Summary Hexaploid triticales were crossed with common wheats, and the resultant froms were selected for either triticale (AD 213/5-80) or common wheat (lines 381/80, 391/80, 393/80). The cytogenetic analysis showed that all forms differ in their chromosome composition. Triticale AD 213/5-80 and wheat line 381/80 were stable forms with 2n = 6x = 42. Lines 391/80 and 393/80 were cytologically unstable. In triticale AD 213/5-80, a 2R (2D) chromosome substitution was found. Each of the three wheat lines had a chromosome formed by the translocation of the short arm of IR into the long arm of the IB chromosome. In line 381/80, this chromosome seems to be inherited from the Kavkaz wheat variety. In lines 391/80 and 393/80, this chromosome apparently formed de novo since the parent forms did not have it. The karyotype of line 381/80 was found to contain rye chromosomes 4R/7R, 5R and 7R/4R. About 15% of the cells in line 391/80 contained an isochromosome for the 5R short arm and also a chromosome which arose from the translocation of the long arms of the 5D and 5R chromosomes. About one-third of the cells in the common wheat line 393/80 contained the 5R chromosome. This chromosome was normal or rearranged. Practical applications of the C-banding technique in the breeding of triticale is discussed.  相似文献   

11.
We have integrated a plasmid containing a yeast centromere, CEN5, into the HIS4 region of chromosome III by transformation. Of the three transformant colonies examined, none contained a dicentric chromosome, but all contained a rearranged chromosome III. In one transformant, rearrangement occurred by homologous recombination between two Ty elements; one on the left arm and the other on the right arm of chromosome III. This event produced a ring chromosome (ring chromosome III) of about 60 kb consisting of CEN3 and all other sequences between the two Ty elements. In addition, a linear chromosome (chromosome IIIA) consisting of sequences distal to the two Ty elements including CEN5, but lacking 60 kb of sequences from the centromeric region, was produced. Two other transformants also contain a similarly altered linear chromosome III as well as an apparently normal copy of chromosome III. These results suggest that dicentric chromosomes cannot be maintained in yeast and that dicentric structures must be resolved for the cell to survive.--The meiotic segregation properties of ring chromosome III and linear chromosome IIIA were examined in diploid cells which also contained a normal chromosome III. Chromosome IIIA and normal chromosome III disjoined normally, indicating that homology or parallel location of the centromeric regions of these chromosomes are not essential for proper meiotic segregation. In contrast, the 60-kb ring chromosome III, which is homologous to the centromeric region of the normal chromosome III, did not appear to pair with fidelity with chromosome III.  相似文献   

12.
Devil facial tumour disease (DFTD) is a fatal, transmissible malignancy that threatens the world's largest marsupial carnivore, the Tasmanian devil, with extinction. First recognised in 1996, DFTD has had a catastrophic effect on wild devil numbers, and intense research efforts to understand and contain the disease have since demonstrated that the tumour is a clonal cell line transmitted by allograft. We used chromosome painting and gene mapping to deconstruct the DFTD karyotype and determine the chromosome and gene rearrangements involved in carcinogenesis. Chromosome painting on three different DFTD tumour strains determined the origins of marker chromosomes and provided a general overview of the rearrangement in DFTD karyotypes. Mapping of 105 BAC clones by fluorescence in situ hybridisation provided a finer level of resolution of genome rearrangements in DFTD strains. Our findings demonstrate that only limited regions of the genome, mainly chromosomes 1 and X, are rearranged in DFTD. Regions rearranged in DFTD are also highly rearranged between different marsupials. Differences between strains are limited, reflecting the unusually stable nature of DFTD. Finally, our detailed maps of both the devil and tumour karyotypes provide a physical framework for future genomic investigations into DFTD.  相似文献   

13.

Background  

Nasopharyngeal carcinoma (NPC) is commonly found in Southern China and South East Asia. Epstein-Barr virus (EBV) infection is well associated with NPC and has been implicated in its pathogenesis. Moreover, various chromosome rearrangements were reported in NPC. However, the underlying mechanism of chromosome rearrangement remains unclear. Furthermore, the relationship between EBV and chromosome rearrangement with respect to the pathogenesis of NPC has not been established. We hypothesize that during virus- or stress-induced apoptosis, chromosomes are initially cleaved at the base of the chromatin loop domain structure. Upon DNA repair, cell may survive with rearranged chromosomes.  相似文献   

14.
Nine variant cell lines isolated from cloned 7,12-dimethylbenz(a) -ahthracene transformed Balb/3T3 mouse cells by treatment with FUdR had growth parameters closely resembling nontransformed cells. Chromosome analysis of the variant lines demonstrated that six variants had a diminished number and three variants had an increased number of chromosomes compared to the parental transformed cell line. All variants had unique marker chromosomes not present in the parental transformed Balb/3T3 cells. The distribution of marker chromosomes and heterochromatin suggested that the initial event in variant formation was a reduction in chromosome number with a subsequent polyploidization of the reduced chromosome complement.  相似文献   

15.
A rearrangement of the c-H-ras locus was detected in a T-cell line (DA-2) established from a Moloney leukemia virus-induced tumor. This rearrangement was associated with the high-level expression of H-ras RNA and the H-ras gene product, p21. DNA from DA-2 cells transformed fibroblasts in DNA transfection experiments, and the transformed fibroblasts contained the rearranged H-ras locus. The rearrangement involved one allele and was present in tissue from the primary tumor from which the cell line was isolated. Cloning and sequencing of the rearranged allele and comparison with the normal allele demonstrated that the rearrangement was complex and probably resulted from the integration of a retrovirus in the H-ras locus between a 5' noncoding exon and the first coding exon and a subsequent homologous recombination between this provirus and another newly acquired provirus also located on chromosome 7. These events resulted in the translocation of the coding exons of the H-ras locus away from the 5' noncoding exon region to a new genomic site on chromosome 7. Sequencing of the coding regions of the gene failed to detect mutations in the 12th, 13th, 59th, or 61st codons. The possible reasons for the complexity of the rearrangement and the significance of the activation of the H-ras locus to T-cell transformation are discussed.  相似文献   

16.
To determine possible relationships between DNA hypomethylation and chromosome instability, human lymphoblastoid cell lines from different genetic constitutions were studied with regard to 1) uncoiling and rearrangements, which preferentially affect the heterochromatic segments of chromosomes 1 and 16; 2) the methylation status of the tandemly repetitive sequences (classical satellite and alphoid DNAs) from chromosomes 1 and 16, and of the L1Hs interspersed repetitive sequences. The methylation status largely varied from cell line to cell line, but for a given cell line, the degree of methylation was similar for all the repetitive DNAs studied. Two cell lines, one obtained from a Fanconi anemia patient and the other from an ataxia telangiectasia patient were found to be heavily hypomethylated. The heterochromatic segments of their chromosomes 1 and 16 were more frequently elongated and rearranged than those from other cell lines, which were found to be less hypomethylated. Thus, in these lymphoblastoid cell lines, alterations characterized by uncoiling and rearrangements of heterochromatic segments from chromosomes 1 and 16 seem to correlate with the hypomethylation of their repetitive DNAs. Two-color in situ hybridizations demonstrated that these elongations and rearrangements involved only classical satellite-DNA-containing heterochromatin. This specificity may be related to the excess of breakages affecting the chromosomes carrying these structures in a variety of pathological conditions.  相似文献   

17.
The ribonuclease inhibitor from human placenta is a tight-binding inhibitor of alkaline and neutral ribonucleases, including the blood vessel-inducing protein, angiogenin. The location of the inhibitor gene within the human genome has now been determined. Utilizing human-rodent hybrid cell lines, it was found on chromosome 11. The localization was refined to chromosome band 11p15 by in situ hybridization of the ribonuclease inhibitor cDNA to normal metaphase chromosomes. A further refinement was obtained by in situ hybridization of the probe to metaphase chromosomes from RPMI 8402 cells, a line containing a well-characterized translocation t(11;14)(p15;q11) with a chromosome 11 breakpoint between the insulin-like growth factor 2 (IGF2) and Harvey rat sarcoma viral oncogene homolog genes. This analysis has localized the ribonuclease inhibitor gene to chromosome subband 11p15.5, distal to the IGF2 gene.  相似文献   

18.
L V Filatov  S E Mamaeva 《Tsitologiia》1985,27(9):1031-1038
Karyotypes of two continuous Chinese hamster cell lines CHO-K1 and V-79 were studied by G-banding and silver staining. Modal chromosome numbers were 20 and 21, respectively. Both the lines were characterized with a high degree of karyotype stability and constant ratio of normal and marker chromosomes. Nulli- and monosomy were recorded for 9 chromosome pairs in CHO-K1, and 8 pairs in V-79 cell lines. Modal numbers of Ag-positive NOR were 4 in CHO-K1 and 5 in V-79. A definition of the origin of the majority of marker chromosomes in both the lines (11 and 10, respectively) made it possible to establish the exact chromosome content of each cell and to determine the generalized reconstructed karyotypes of cell lines. We established the retention of diploid chromosome set of all the autosomes, the true monosomy for one X-chromosome in both the lines, and the constant extracopying of a short arm of chromosome 3 in the V-79 cell line.  相似文献   

19.
Summary The MET oncogene, present in the MNNG-HOS chemically transformed human cell line, is activated by a gene fusion involving sequences from chromosome 1 and chromosome 7. Activated MET can act as a dominant selectable marker for chromosome-mediated gene transfer, and several transfectant cell lines have been established using this technique. Analysis of the transgenomes within these cell lines indicates that MET activation is not simply due to a chromosome translocation, but may involve an interstitial insertion of DNA from chromosome 1, into chromosome 7, probably associated with other rearrangements. Pulse field gel analysis of two transfectants indicates that, despite the presence of complex rearrangements close to MET, chromosome 7 sequences are grossly intact over a 1-Mb region thought to contain the gene defective in cystic fibrosis.  相似文献   

20.
Schoen DJ 《Genetics》2000,154(2):943-952
Estimates of the number of chromosomal breakpoints that have arisen (e.g., by translocation and inversion) in the evolutionary past between two species and their common ancestor can be made by comparing map positions of marker loci. Statistical methods for doing so are based on a random-breakage model of chromosomal rearrangement. The model treats all modes of chromosome rearrangement alike, and it assumes that chromosome boundaries and breakpoints are distributed randomly along a single genomic interval. Here we use simulation and numerical analysis to test the validity of these model assumptions. Mean estimates of numbers of breakpoints are close to those expected under the random-breakage model when marker density is high relative to the amount of chromosomal rearrangement and when rearrangements occur by translocation alone. But when marker density is low relative to the number of chromosomes, and when rearrangements occur by both translocation and inversion, the number of breakpoints is underestimated. The underestimate arises because rearranged segments may contain markers, yet the rearranged segments may, nevertheless, be undetected. Variances of the estimate of numbers of breakpoints decrease rapidly as markers are added to the comparative maps, but are less influenced by the number or type of chromosomal rearrangement separating the species. Variances obtained with simulated genomes comprised of chromosomes of equal length are substantially lower than those obtained when chromosome size is unconstrained. Statistical power for detecting heterogeneity in the rate of chromosomal rearrangement is also investigated. Results are interpreted with respect to the amount of marker information required to make accurate inferences about chromosomal evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号