首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We examined the effect of norepinephrine injections on non-shivering thermogenesis (NST), rewarming rate, and metabolic cost during torpor arousal in warm- and cool-acclimated Chilean mouse-opposums, Thylamys elegans. Warm- and cool-acclimated animals did not display NST in response to NE injections. Values of VO2 (resting, after saline and NE injections) were not significantly different within treatments. Rewarming rates of warm-acclimated animals did not differ significantly from those in cool-acclimated animals. In contrast, the metabolic cost of torpor arousal was significantly affected by acclimation temperature. Warm-acclimated animals required more energy for arousal than cool-acclimated animals. Our study suggests that the main thermoregulatory mechanism during torpor arousal in this Chilean marsupial is shivering thermogenesis, and that its amount can be changed by thermal acclimation.  相似文献   

2.
We examined the effect of norepinephrine injections on non-shivering thermogenesis (NST), rewarming rate, and metabolic cost during torpor arousal in warm- and cool-acclimated Chilean mouse-opposums, Thylamys elegans. Warm- and cool-acclimated animals did not display NST in response to NE injections. Values of VO2 (resting, after saline and NE injections) were not significantly different within treatments. Rewarming rates of warm-acclimated animals did not differ significantly from those in cool-acclimated animals. In contrast, the metabolic cost of torpor arousal was significantly affected by acclimation temperature. Warm-acclimated animals required more energy for arousal than cool-acclimated animals. Our study suggests that the main thermoregulatory mechanism during torpor arousal in this Chilean marsupial is shivering thermogenesis, and that its amount can be changed by thermal acclimation.  相似文献   

3.
We examined the energetics of the living fossil microbiotheriid Dromiciops gliroides, a nocturnal and rare small marsupial, endemic to the northern portion of the temperate forest of southern South America. We investigated the effects of changes at ambient temperature and food restriction on the energetics and patterns of torpor. We determined whether they exhibit shallow daily torpor or deep prolonged torpor like some Australian marsupials. Thermal conductance was 92.5% of the expected value for a similarly sized eutherian and basal metabolic rate was 82.9 and 58.6% of the predicted value for standard metatherians and eutherians, respectively. Euthermic D. gliroides showed daily fluctuations in body temperature, being significantly higher during the night. Dromiciops gliroides entered torpor and aroused spontaneously. The duration of torpor bouts increased in response to decreasing ambient temperature; torpor bout duration ranged from 10 h at 20 °C to 120 h at 12.5 °C. This study is the first record of deep torpor or hibernation for a South American mammal. Torpor in this species as well as in marsupials in general appears to be an opportunistic response to unpredictable biotic and abiotic conditions.Abbreviations VO2 metabolic rate - Tb body temperature - Ta ambient temperature - BMR basal metabolic rate - C thermal conductance - Tm temperature differentialCommunicated by I.D. Hume  相似文献   

4.
Many small mammals bask in the sun during rewarming from heterothermy, but the implications of this behaviour for their energy balance remain little understood. Specifically, it remains unclear whether solar radiation supplements endogenous metabolic thermogenesis (i.e., rewarming occurs through the additive effects of internally-produced and external heat), or whether solar radiation reduces the energy required to rewarm by substituting (i.e, replacing) metabolic heat production. To address this question, we examined patterns of torpor and rewarming rates in eastern rock elephant shrews (Elephantulus myurus) housed in outdoor cages with access to either natural levels of solar radiation or levels that were experimentally reduced by means of shade cloth. We also tested whether acclimation to solar radiation availability was manifested via phenotypic flexibility in basal metabolic rate (BMR), non-shivering thermogenesis (NST) capacity and/or summit metabolism (Msum). Rewarming rates varied significantly among treatments, with elephant shrews experiencing natural solar radiation levels rewarming faster than conspecifics experiencing solar radiation levels equivalent to approximately 20% or 40% of natural levels. BMR differed significantly between individuals experiencing natural levels of solar radiation and conspecifics experiencing approximately 20% of natural levels, but no between-treatment difference was evident for NST capacity or Msum. The positive relationship between solar radiation availability and rewarming rate, together with the absence of acclimation in maximum non-shivering and total heat production capacities, suggests that under the conditions of this study solar radiation supplemented rather than substituted metabolic thermogenesis as a source of heat during rewarming from heterothermy.  相似文献   

5.
Body temperature and metabolic rate during natural hypothermia in endotherms   总被引:12,自引:6,他引:6  
During daily torpor and hibernation metabolic rate is reduced to a fraction of the euthermic metabolic rate. This reduction is commonly explained by temperature effects on biochemical reactions, as described by Q 10 effects or Arrhenius plots. This study shows that the degree of metabolic suppression during hypothermia can alternatively be explained by active downregulation of metabolic rate and thermoregulatory control of heat production. Heat regulation is fully adequate to predict changes in metabolic rate, and Q 10 effects are not required to explain the reduction of energy requirements during hibernation and torpor.Abbreviations BMR basal metabolic rate - BW body weight - C thermal conductance - CHL thermal conductance as derived from HL - CHP thermal conductance as derived from HP - HL heat loss - HP heat production - MR metabolic rate - RQ respiratory quotient - Ta ambient temperature - Tb body temperature  相似文献   

6.
Many small mammals inhabiting fluctuating and cold environments display enhanced capacity for seasonal changes in nonshivering thermogenesis (NST) and thermoregulatory maximum metabolic rate (MMR). However, it is not known how this plasticity remains in a mammal that rarely experiences extreme thermal fluctuations. In order to answer this question, we determined body mass (m(b)), basal metabolic rate (BMR), NST, MMR, and minimum thermal conductance (C) on a Chilean fossorial caviomorph (Spalacopus cyanus) from a coastal population, acclimated to cold (15 degrees C) and warm (30 degrees C) conditions. NST was measured as the maximum response of metabolic rate (NST(max)) after injection of norepinephrine (NE) in thermoneutrality minus BMR. Maximum metabolic rate was assessed in animals exposed to enhanced heat-loss atmosphere (He-O2) connected with an open-flow respirometer. Body mass and metabolic variables increased significantly after cold acclimation with respect to warm acclimation but to a low extent (BMR, 26%; NST, 10%; and MMR, 12%). However, aerobic scope (MMR/BMR), calculated shivering thermogenesis (ST), and C did not change with acclimation regime. Our data suggest that physiological plasticity of S. cyanus is relatively low, which is in accordance with a fossorial mode of life. Although little is known about MMR and NST in fossorial mammals, S. cyanus has remarkably high NST; low MMR; and surprisingly, a nil capacity of ST when compared with other rodents.  相似文献   

7.
8.
Marsupial seed dispersal is a rare phenomenon, although it may be ecologically significant in southern South America. The marsupial Dromiciops gliroides is endemic to the northern part of the temperate forest of South America. Here we describe the food habits and examine the potential role of D. gliroides as a seed disperser. We evaluated the diet of this marsupial in its natural habitat and in captivity. Dromiciops gliroides is omnivorous showing high consumption of a diversity of fruits. In captivity, D. gliroides consumed fruits from 80% of 22 native plant species we examined. Experiments conducted with fruits from two common understory shrubs show that seed passage through the digestive tract of D. gliroides enhances germination. Our results suggest that this species may have an important role as a seed disperser in the temperate forest of South America, which might offset a scarcity of frugivorous bird species.  相似文献   

9.
Abstract.— As a first examination of the additive genetic variance of thermoregulatory traits in a natural population of endotherms, we studied the quantitative genetics of key physiological ecology traits in the leaf-eared mouse, Phyllotis darwini. We measured basal metabolic rate (BMR), nonshivering thermogenesis (NST), maximum metabolic rate for thermoregulation (MMR), thermal conductance (CT), body temperature (Tb), and factorial aerobic scope (FAS) in individuals acclimated to cold and warm conditions. For comparability with previous studies, we included the following morphological traits: foot length (FL), total length (TL), body mass (mb, at birth, sexual maturity, 6 months, and 8 months). Variance components were obtained from two different procedures: the expected variance component in an ANOVA Type III sum of squares and an animal model approach using restricted maximum likelihood. Results suggest the presence of additive genetic variance in FL (h2= 0.47, P = 0.045), CT of cold-acclimated animals (h2= 0.66, P = 0.041), and night body temperature, measured in cold-acclimated animals (h2= 0.68, P = 0.080). Heritabilities of mb were near zero at all ages, but maternal effects and common environment effects were high and significant. We found no evidence of additive genetic variance in BMR, NST, MMR, or FAS (i.e., estimates were not significantly different from zero for all tests). Our results are in general agreement with previous studies of mammals that reported low heritability for: (1) BMR and MMR; (2) daytime body temperature; and (3) body mass for wild, but not laboratory or domestic, populations.  相似文献   

10.
1. Monodelphis domestica is a small marsupial mammal from South America. Its thermogenic abilities in the cold were determined when the opossums were both warm (WA) and cold (CA) acclimated. Maximum heat production of M. domestica was obtained at low temperatures in helium-oxygen. 2. Basal metabolic rate (BMR) in the WA animals was 3.2 W/kg and mean body temperature was 32.6 degrees C at 30 degrees C. These values were lower than those generally reported for marsupials. Nevertheless, these M. domestica showed considerable metabolic expansibility in response to cold. Sustained (summit) metabolism was 8-9 times BMR, while peak metabolism was 11-13 times BMR. These maximum values were equal to, or above, those expected in small placentals. 3. Cold acclimation altered the thermal responses of M. domestica, particularly in warm TaS. However, summit metabolism was not significantly increased; nor did M. domestica show a significant thermogenic response to noradrenaline, which in many small placentals elicits non-shivering thermogenesis. The thermoregulatory responses of this American marsupial were, in most aspects, similar to those of Australian marsupials. This suggests that the considerable thermoregulatory abilities of marsupials are of some antiquity.  相似文献   

11.
A large number of physiological acclimation studies assume that flexibility in a certain trait is both adaptive and functionally important for organisms in their natural environment; however, it is not clear how an organism’s capacity for temperature acclimation translates to the seasonal acclimatization that these organisms must accomplish. To elucidate this relationship, we measured BMR and TEWL rates in both field-acclimatized and laboratory-acclimated adult rufous-collared sparrows (Zonotrichia capensis). Measurements in field-acclimatized birds were taken during the winter and summer seasons; in the laboratory-acclimated birds, we took our measurements following 4 weeks at either 15 or 30°C. Although BMR and TEWL rates did not differ between winter and summer in the field-acclimatized birds, laboratory-acclimated birds exposed to 15°C exhibited both a higher BMR and TEWL rate when compared to the birds acclimated to 30°C and the field-acclimatized birds. Because organ masses seem to be similar between field and cold-acclimated birds whereas BMR is higher in cold-acclimated birds, the variability in BMR cannot be explained completely by adjustments in organ masses. Our findings suggest that, although rufous-collared sparrows can exhibit thermal acclimation of physiological traits, sparrows do not use this capacity to cope with minor to moderate fluctuations in environmental conditions. Our data support the hypothesis that physiological flexibility in energetic traits is a common feature of avian metabolism.  相似文献   

12.
The high expenditure of energy required for endogenous rewarming is one of the widely perceived disadvantages of torpor. However, recent evidence demonstrates that passive rewarming either by the increase of ambient temperature or by basking in the sun appears to be common in heterothermic birds and mammals. As it is presently unknown how radiant heat affects energy expenditure during rewarming from torpor and little is known about how it affects normothermic thermoregulation, we quantified the effects of radiant heat on body temperature and metabolic rate of the small (body mass 25 g) marsupial Sminthopsis macroura in the laboratory. Normothermic resting individuals exposed to radiant heat were able to maintain metabolic rates near basal levels (at 0.91 ml O(2) g(-1) h(-1)) and a constant body temperature down to an ambient temperature of 12 degrees C. In contrast, metabolic rates of individuals without access to radiant heat were 4.5-times higher at an ambient temperature of 12 degrees C and body temperature fell with ambient temperature. During radiant heat-assisted passive rewarming from torpor, animals did not employ shivering but appeared to maximise uptake of radiant heat. Their metabolic rate increased only 3.2-times with a 15- degrees C rise of body temperature (Q(10)=2.2), as predicted by Q(10) effects. In contrast, during active rewarming shivering was intensive and metabolic rates showed an 11.6-times increase. Although body temperature showed a similar absolute change between the beginning and the end of the rewarming process, the overall energetic cost during active rewarming was 6.3-times greater than that during passive, radiant heat-assisted rewarming. Our study demonstrates that energetic models assuming active rewarming from torpor at low ambient temperatures can substantially over-estimate energetic costs. The low energy expenditure during passive arousal provides an alternative explanation as to why daily torpor is common in sunny regions and suggests that the prevalence of torpor in low latitudes may have been under-estimated in the past.  相似文献   

13.
大绒鼠冷驯化和脱冷驯化能量代谢特征的变化   总被引:1,自引:1,他引:0  
通过测定冷驯化(5℃)到脱冷驯化(30℃)条件下,大绒鼠(Eothenomys miletus)的体重、摄入能、静止代谢率(RMR)、非颤抖性产热(NST)和血清瘦素含量等参数,探讨了血清瘦素浓度与能量收支的关系。结果表明,冷驯化可致大绒鼠体重下降,RMR、NST、摄入能升高,血清瘦素浓度降低;脱冷驯化后大绒鼠体重增加,RMR、NST、摄入能降低,血清瘦素浓度增加。血清瘦素含量与体重呈正相关,与RMR、NST、摄入能呈负相关。表明大绒鼠的体重、摄入能和产热能力具有较强的可塑性,且瘦素可能参与了大绒鼠适应冷驯化及恢复过程中的能量平衡和体重的调节。  相似文献   

14.
Measurements of torpor use are pivotal for many research areas concerning the thermal biology of endotherms. Here, I used infrared thermocouples to non-invasively examine torpor patterns in the small marsupial fat-tailed dunnart (Sminthopsis crassicaudata). Sensors were installed inside the nesting chambers to continuously monitor fur temperature in undisturbed animals. Firstly, to verify the measurements, fur temperature was monitored simultaneously with body temperature using internal radio transmitters (n=6). Secondly, I conducted a food restriction study to demonstrate the reliability of the method within a physiological experiment (n=8). Based on the correspondence of simultaneously measured fur and body temperature during torpor bouts, I was able to confirm that infrared thermocouples provide reliable temporal information on torpor patterns. Furthermore, torpor use was successfully monitored over a 20-day food restriction study. The method can easily be adapted to suit other small mammal or bird species and presents a useful, inexpensive approach for examining torpor patterns remotely and non-invasively in the laboratory.  相似文献   

15.
Eothenomys miletus is an important species inhabiting Hengduan mountains region. In order to study adaptive strategy and the role of serum leptin level in response to a 49 d cold exposure, body mass, energy intake, basal metabolic rate (BMR), nonshivering thermogenesis (NST) in E. miletus were measured. During cold exposure (5±1 oC), body mass decreased; serum leptin levels decreased significantly and were positively correlated with body mass and fat mass; energy intake, BMR and NST were higher at 5 °C than that of controls. These results suggest that E. miletus enhanced thermogenic capacity and increased maintenance cost during cold acclimation, resulting in increased energy intake. Serum leptin participated in the regulation of energy balance and body mass in E. miletus.  相似文献   

16.
17.
Columbid birds represent a useful model taxon for examining adaptation in metabolic and thermal traits, including the effects of insularity. To test predictions concerning the role of insularity and low predation risk as factors selecting for the use of torpor, and the evolution of low basal metabolic rate in island species, we examined thermoregulation under laboratory and semi-natural conditions in a mainland species, the African Green Pigeon (Treron calvus). Under laboratory conditions, rest-phase body temperature (T b) was significantly and positively correlated with air temperature (T a) between 0 and 35 °C, and the relationship between resting metabolic rate (RMR) and T a differed from typical endothermic patterns. The minimum RMR, which we interpret as basal metabolic rate (BMR), was 0.825 ± 0.090 W. Green pigeons responded to food restriction by significantly decreasing rest-phase T b, but the reductions were small (at most ~5 °C below normothermic values), with a minimum T b of 33.1 °C recorded in a food-deprived bird. We found no evidence of the large reductions in T b and metabolic rate and the lethargic state characteristic of torpor. The absence of torpor in T. calvus lends support to the idea that species restricted to islands that are free of predators are more likely to use torpor than mainland species that face the risk of predation during the rest-phase. We also analysed interspecific variation in columbid BMR in a phylogenetically informed framework and verified the conclusions of an earlier study which found that BMR is significantly lower in island species compared to those that occur on mainlands.  相似文献   

18.
The daily activity and energy metabolism of pouched mice (Saccostomus campestris) from two localities in southern Africa was examined following warm (25 °C) and cold (10 °C) acclimation under long (LD 14:10) and short (LD 10:14) photoperiol. There was no differential effect of photoperiod on the daily activity or metabolism of pouched mice from the two localities examined, which suggests that reported differences in photoresponsivity between these two populations were not the result of differences in daily organisation. Neverthe-less, there was a significant increase in metabolism at 10 °C, irrespective of photoperiod, even though seven cold-acclimated animals displayed bouts of spontaneous torpor and saved 16.4–36.2% of their daily energy expenditure. All but one of these bouts occurred under short photoperiod, which suggests that short photoperiod facilitated the expression of torpor and influenced the daily energy metabolism of these individuals. As expected for a noctureal species, the amount of time spent active increased following acclimation to short photoperiod at 25 °C. However, there was a reduction in mean activity levels under short photoperiod at 10 °C, possibly because the stimulation of activity by short photoperiod was masked by a reduction in activity during bouts of spontaneous torpor. Cold temperature clearly had an overriding effect on the daily activity and metabolism of this species by necessitating an increase in metabolic heat production and eliciting spontaneous torpor which overrode the effect of short photoperiod on activity at an ambient temperature of 10 °C.Abbreviations 3-ANOVA three-way analysis of variance - %ACT percentage of time spent active - ADMR average daily metabolic rate - M b body mass - MR metabolic rate - MRdark metabolic rate recorded during the dark phase - MRlight metabolic rate recorded during the light phase - NST non-shivering thermogenesis - RQ respiratory quotient - STPD standard temperature and pressure, dry - T a ambient temperature - T b body temperature - VO2 oxygen consumption  相似文献   

19.
The presence of nonshivering thermogenesis in marsupials is controversially debated. Survival of small eutherian species in cold environments is crucially dependent on uncoupling protein 1 (UCP1)-mediated, adaptive nonshivering thermogenesis that is executed in brown adipose tissue. In a small dasyurid marsupial species, the fat-tailed dunnart (Sminthopsis crassicaudata), an orthologue of UCP1 has been recently identified which is upregulated during cold exposure resembling adaptive molecular adjustments of eutherian brown adipose tissue. Here, we tested for a thermogenic function of marsupial brown adipose tissue and UCP1 by evaluating the capacity of nonshivering thermogenesis in cold-acclimated dunnarts. In response to an optimal dosage of noradrenaline, cold-acclimated dunnarts (12°C) showed no additional recruitment of noradrenaline-induced maximal thermogenic capacity in comparison to warm-acclimated dunnarts (24°C). While no differences in body temperature were observed between the acclimation groups, basal metabolic rate was significantly elevated after cold acclimation. Therefore, we suggest that adaptive nonshivering thermogenesis does not occur in this marsupial species despite the cold recruitment of oxidative capacity and UCP1 in the interscapular fat deposit. In conclusion, the ancient UCP orthologue in marsupials does not contribute to the classical nonshivering thermogenesis, and may exhibit a different physiological role.  相似文献   

20.
Data on thermal energetics for vespertilionid bats are under-represented in the literature relative to their abundance, as are data for bats of very small body mass. Therefore, we studied torpor use and thermal energetics in one of the smallest (4 g) Australian vespertilionids, Vespadelus vulturnus. We used open-flow respirometry to quantify temporal patterns of torpor use, upper and lower critical temperatures (T uc and T lc) of the thermoneutral zone (TNZ), basal metabolic rate (BMR), resting metabolic rate (RMR), torpid metabolic rate (TMR), and wet thermal conductance (C wet) over a range of ambient temperatures (T a). We also measured body temperature (T b) during torpor and normothermia. Bats showed a high proclivity for torpor and typically aroused only for brief periods. The TNZ ranged from 27.6°C to 33.3°C. Within the TNZ T b was 33.3±0.4°C and BMR was 1.02±0.29 mlO2 g−1 h−1 (5.60±1.65 mW g−1) at a mean body mass of 4.0±0.69 g, which is 55 % of that predicted for a 4 g bat. Minimum TMR of torpid bats was 0.014±0.006 mlO2 g−1 h−1 (0.079±0.032 mW g−1) at T a=4.6±0.4°C and T b=7.5±1.9. T lc and C wet of normothermic bats were both lower than that predicted for a 4 g bat, which indicates that V. vulturnus is adapted to minimising heat loss at low T a. Our findings support the hypothesis that vespertilionid bats have evolved energy-conserving physiological traits, such as low BMR and proclivity for torpor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号