首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antigen‐specific B‐cell responses require endosomal trafficking to regulate antigen uptake and presentation to helper T cells, and to control expression and signaling of immune receptors. However, the molecular composition of B‐cell endosomal trafficking pathways and their specific roles in B‐cell responses have not been systematically investigated. Here, we report high‐throughput identification of genes regulating B‐cell receptor (BCR)‐mediated antigen internalization using genome‐wide functional screens. We show that antigen internalization depends both on constitutive, clathrin‐mediated endocytosis and on antigen‐induced, clathrin‐independent endocytosis mediated by endophilin A2. Although endophilin A2‐mediated endocytosis is dispensable for antigen presentation, it is selectively required for metabolic support of B‐cell proliferation, in part through regulation of iron uptake. Consequently, endophilin A2‐deficient mice show defects in GC B‐cell responses and production of high‐affinity IgG. The requirement for endophilin A2 highlights a unique importance of clathrin‐independent intracellular trafficking in GC B‐cell clonal expansion and antibody responses.  相似文献   

2.
Immunotherapy is an attractive approach for treating cancer. T‐cell engagers (TCEs) are a type of immunotherapy that are highly efficacious; however, they are challenged by weak T‐cell activation and short persistence. Therefore, alternative solutions to induce greater activation and persistence of T cells during TCE immunotherapy is needed. Methods to activate T cells include the use of lectins, such as phytohemagglutinin (PHA). PHA has not been used to activate T cells in vivo, for immunotherapy, due to its biological instability and toxicity. An approach to overcome the limitations of PHA while also preserving its function is needed. In this study, we report a liposomal PHA which increased PHA stability, reduced toxicity and performed as an immunotherapeutic that is able to activate T cells for the use in future cancer immunotherapies to circumvent current obstacles in immunosuppression and T‐cell exhaustion.  相似文献   

3.
Aging‐associated declines in innate and adaptive immune responses are well documented and pose a risk for the growing aging population, which is predicted to comprise greater than 40 percent of the world''s population by 2050. Efforts have been made to improve immunity in aged populations; however, safe and effective protocols to accomplish this goal have not been universally established. Aging‐associated chronic inflammation is postulated to compromise immunity in aged mice and humans. Interleukin‐37 (IL‐37) is a potent anti‐inflammatory cytokine, and we present data demonstrating that IL‐37 gene expression levels in human monocytes significantly decline with age. Furthermore, we demonstrate that transgenic expression of interleukin‐37 (IL‐37) in aged mice reduces or prevents aging‐associated chronic inflammation, splenomegaly, and accumulation of myeloid cells (macrophages and dendritic cells) in the bone marrow and spleen. Additionally, we show that IL‐37 expression decreases the surface expression of programmed cell death protein 1 (PD‐1) and augments cytokine production from aged T‐cells. Improved T‐cell function coincided with a youthful restoration of Pdcd1, Lat, and Stat4 gene expression levels in CD4+ T‐cells and Lat in CD8+ T‐cells when aged mice were treated with recombinant IL‐37 (rIL‐37) but not control immunoglobin (Control Ig). Importantly, IL‐37‐mediated rejuvenation of aged endogenous T‐cells was also observed in aged chimeric antigen receptor (CAR) T‐cells, where improved function significantly extended the survival of mice transplanted with leukemia cells. Collectively, these data demonstrate the potency of IL‐37 in boosting the function of aged T‐cells and highlight its therapeutic potential to overcome aging‐associated immunosenescence.  相似文献   

4.
Chimeric antigen receptor T‐cell (CAR T) therapy has shown promising efficacy in relapsed and refractory diffuse large B cell lymphoma (DLBCL). While most patients undergo CAR T infusion with active disease, the impact of some clinical variables, such as responsiveness to the pre‐CAR T chemotherapy on the response to CAR T, is unknown. In this single‐institution study, we studied the impact of several pre‐CAR T variables on the post‐CAR outcomes. Sixty patients underwent apheresis for axicabtagene‐ciloleucel (axi‐cel) and 42 of them (70.0%) had primary refractory disease. Bridging therapy between apheresis and lymphodepletion was given in 34 patients (56.7%). After axi‐cel, the overall response rate was 63.3%. Responsiveness to the immediate pre‐CAR T therapy did not show a significant association with response to axi‐cel, progression‐free (PFS) or overall (OS) survival. Multivariable analysis determined that bulky disease before lymphodepletion was independently associated with inferior outcomes, and patients that presented with high‐burden disease unresponsive to immediate pre‐CAR T therapy had a dismal outcome. This data supports proceeding with treatment in CAR T candidates regardless of their response to immediate pre‐CAR T therapy. Interim therapeutic interventions should be considered in patients who have known risk factors for poor outcomes (bulky disease, high LDH).  相似文献   

5.
6.
The proliferation and differentiation of antigen‐specific B cells, including the generation of germinal centers (GC), are prerequisites for long‐lasting, antibody‐mediated immune protection. Affinity for antigen determines B cell recruitment, proliferation, differentiation, and competitiveness in the response, largely through determining access to T cell help. However, how T cell‐derived signals contribute to these outcomes is incompletely understood. Here, we report how the signature cytokine of follicular helper T cells, IL‐21, acts as a key regulator of the initial B cell response by accelerating cell cycle progression and the rate of cycle entry, increasing their contribution to the ensuing GC. This effect occurs over a wide range of initial B cell receptor affinities and correlates with elevated AKT and S6 phosphorylation. Moreover, the resultant increased proliferation can explain the IL‐21‐mediated promotion of plasma cell differentiation. Collectively, our data establish that IL‐21 acts from the outset of a T cell‐dependent immune response to increase cell cycle progression and fuel cyclic re‐entry of B cells, thereby regulating the initial GC size and early plasma cell output.  相似文献   

7.
ObjectivesThis study investigated the characteristics of the immune repertoire in normal Chinese individuals of different ages.Materials and MethodsIn this study, all seven receptor chains from both B and T cells in peripheral blood of 16 normal Chinese individuals from two age groups were analyzed using high‐throughput sequencing and dimer‐avoided multiplex PCR amplification. Normal in this study is defined as no chronic, infectious or autoimmune disease within 6 months prior to blood draw.ResultsWe found that compared with the younger group, the clonal expression of T‐cell receptor repertoire increased in the older group, while diversity decreased. In addition, we found that the T‐cell receptor repertoire was more significantly affected by age than the B‐cell receptor repertoire, including significant differences in the use of the unique TCR‐alpha and TCR‐beta V‐J gene combinations, in the two groups of normal participants. We further analyzed the degree of complementarity determining region 3 sequence sharing between the two groups, and found shared TCR‐alpha, TCR‐gamma, immunoglobulin‐kappa and immunoglobulin‐lambda chain complementarity determining region 3 sequences in all subjects.ConclusionTaken together, our study gives us a better understanding of the immune repertoire of different normal Chinese people, and these results can be applied to the treatment of age‐related diseases. Immune repertoire analysis also allows us to observe participant''s wellness, aiding in early‐stage diagnosis.

With aging, the body''s thymus involution, T and B cells senescence, T cell clones expand, the diversity of the TCR repertoire decreases, and the immunity of the body''s immune system decreases.  相似文献   

8.
9.
T and B cells continually recirculate between blood and secondary lymphoid organs. To promote their trans‐endothelial migration (TEM), chemokine receptors control the activity of RHO family small GTPases in part via GTPase‐activating proteins (GAPs). T and B cells express several RHO‐GAPs, the function of most of which remains unknown. The ARHGAP45 GAP is predominantly expressed in hematopoietic cells. To define its in vivo function, we describe two mouse models where ARHGAP45 is ablated systemically or selectively in T cells. We combine their analysis with affinity purification coupled to mass spectrometry to determine the ARHGAP45 interactome in T cells and with time‐lapse and reflection interference contrast microscopy to assess the role of ARGHAP45 in T‐cell polarization and motility. We demonstrate that ARHGAP45 regulates naïve T‐cell deformability and motility. Under physiological conditions, ARHGAP45 controls the entry of naïve T and B cells into lymph nodes whereas under competitive repopulation it further regulates hematopoietic progenitor cell engraftment in the bone marrow, and T‐cell progenitor thymus seeding. Therefore, the ARGHAP45 GAP controls multiple key steps in the life of T and B cells.  相似文献   

10.
11.
The humoral immune response to SARS‐CoV‐2 results in antibodies against spike (S) and nucleoprotein (N). However, whilst there are widely available neutralization assays for S antibodies, there is no assay for N‐antibody activity. Here, we present a simple in vitro method called EDNA (electroporated‐antibody‐dependent neutralization assay) that provides a quantitative measure of N‐antibody activity in unpurified serum from SARS‐CoV‐2 convalescents. We show that N antibodies neutralize SARS‐CoV‐2 intracellularly and cell‐autonomously but require the cytosolic Fc receptor TRIM21. Using EDNA, we show that low N‐antibody titres can be neutralizing, whilst some convalescents possess serum with high titres but weak activity. N‐antibody and N‐specific T‐cell activity correlates within individuals, suggesting N antibodies may protect against SARS‐CoV‐2 by promoting antigen presentation. This work highlights the potential benefits of N‐based vaccines and provides an in vitro assay to allow the antibodies they induce to be tested.  相似文献   

12.
One of the earliest hallmarks of immune aging is thymus involution, which not only reduces the number of newly generated and exported T cells, but also alters the composition and organization of the thymus microenvironment. Thymic T‐cell export continues into adulthood, yet the impact of thymus involution on the quality of newly generated T‐cell clones is not well established. Notably, the number and proportion of medullary thymic epithelial cells (mTECs) and expression of tissue‐restricted antigens (TRAs) decline with age, suggesting the involuting thymus may not promote efficient central tolerance. Here, we demonstrate that the middle‐aged thymic environment does not support rapid motility of medullary thymocytes, potentially diminishing their ability to scan antigen presenting cells (APCs) that display the diverse self‐antigens that induce central tolerance. Consistent with this possibility, thymic slice assays reveal that the middle‐aged thymic environment does not support efficient negative selection or regulatory T‐cell (Treg) induction of thymocytes responsive to either TRAs or ubiquitous self‐antigens. This decline in central tolerance is not universal, but instead impacts lower‐avidity self‐antigens that are either less abundant or bind to TCRs with moderate affinities. Additionally, the decline in thymic tolerance by middle age is accompanied by both a reduction in mTECs and hematopoietic APC subsets that cooperate to drive central tolerance. Thus, age‐associated changes in the thymic environment result in impaired central tolerance against moderate‐avidity self‐antigens, potentially resulting in export of increasingly autoreactive naive T cells, with a deficit of Treg counterparts by middle age.  相似文献   

13.
Mutations in VAV1, a gene that encodes a multifunctional protein important for lymphocytes, are found at different frequencies in peripheral T‐cell lymphoma (PTCL), non‐small cell lung cancer, and other tumors. However, their pathobiological significance remains unsettled. After cataloguing 51 cancer‐associated VAV1 mutations, we show here that they can be classified in five subtypes according to functional impact on the three main VAV1 signaling branches, GEF‐dependent activation of RAC1, GEF‐independent adaptor‐like, and tumor suppressor functions. These mutations target new and previously established regulatory layers of the protein, leading to quantitative and qualitative changes in VAV1 signaling output. We also demonstrate that the most frequent VAV1 mutant subtype drives PTCL formation in mice. This process requires the concurrent engagement of two downstream signaling branches that promote the chronic activation and transformation of follicular helper T cells. Collectively, these data reveal the genetic constraints associated with the lymphomagenic potential of VAV1 mutant subsets, similarities with other PTCL driver genes, and potential therapeutic vulnerabilities.  相似文献   

14.
Classic Hodgkin lymphoma (cHL) is usually characterized by a low tumour cell content, derived from crippled germinal centre B cells. Rare cases have been described in which the tumour cells show clonal T‐cell receptor rearrangements. From a clinicopathological perspective, it is unclear if these cases should be classified as cHL or anaplastic large T‐cell lymphoma (ALCL). Since we recently observed differences in the motility of ALCL and cHL tumour cells, here, we aimed to obtain a better understanding of T‐cell‐derived cHL by investigating their global proteomic profiles and their motility. In a proteomics analysis, when only motility‐associated proteins were regarded, T‐cell‐derived cHL cell lines showed the highest similarity to ALK ALCL cell lines. In contrast, T‐cell‐derived cHL cell lines presented a very low overall motility, similar to that observed in conventional cHL. Whereas all ALCL cell lines, as well as T‐cell‐derived cHL, predominantly presented an amoeboid migration pattern with uropod at the rear, conventional cHL never presented with uropods. The migration of ALCL cell lines was strongly impaired upon application of different inhibitors. This effect was less pronounced in cHL cell lines and almost invisible in T‐cell‐derived cHL. In summary, our cell line‐derived data suggest that based on proteomics and migration behaviour, T‐cell‐derived cHL is a neoplasm that shares features with both cHL and ALCL and is not an ALCL with low tumour cell content. Complementary clinical studies on this lymphoma are warranted.  相似文献   

15.
16.
Severe respiratory viral infectious diseases such as influenza and COVID‐19 especially affect the older population. This is partly ascribed to diminished CD8+ T‐cell responses a result of aging. The phenotypical diversity of the CD8+ T‐cell population has made it difficult to identify the impact of aging on CD8+ T‐cell subsets associated with diminished CD8+ T‐cell responses. Here we identify a novel human CD8+ T‐cell subset characterized by expression of Killer‐cell Immunoglobulin‐like Receptors (KIR+) and CD45RA (RA+). These KIR+RA+ T cells accumulated with age in the blood of healthy individuals (20–82 years of age, n = 50), expressed high levels of aging‐related markers of T‐cell regulation, and were functionally capable of suppressing proliferation of other CD8+ T cells. Moreover, KIR+RA+ T cells were a major T‐cell subset becoming activated in older adults suffering from an acute respiratory viral infection (n = 36), including coronavirus and influenza virus infection. In addition, older adults with influenza A infection showed that higher activation status of their KIR+RA+ T cells associated with longer duration of respiratory symptoms. Together, our data indicate that KIR+RA+ T cells are a unique human T‐cell subset with regulatory properties that may explain susceptibility to viral respiratory disease at old age.  相似文献   

17.
Decline in immune function during aging increases susceptibility to different aging‐related diseases. However, the underlying molecular mechanisms, especially the genetic factors contributing to imbalance of naïve/memory T‐cell subpopulations, still remain largely elusive. Here, we show that loss of DJ‐1 encoded by PARK7/DJ‐1, causing early‐onset familial Parkinson’s disease (PD), unexpectedly diminished signs of immunoaging in T‐cell compartments of both human and mice. Compared with two gender‐matched unaffected siblings of similar ages, the index PD patient with DJ‐1 deficiency showed a decline in many critical immunoaging features, including almost doubled non‐senescent T cells. The observation was further consolidated by the results in 45‐week‐old DJ‐1 knockout mice. Our data demonstrated that DJ‐1 regulates several immunoaging features via hematopoietic‐intrinsic and naïve‐CD8‐intrinsic mechanisms. Mechanistically, DJ‐1 depletion reduced oxidative phosphorylation (OXPHOS) and impaired TCR sensitivity in naïve CD8 T cells at a young age, accumulatively leading to a reduced aging process in T‐cell compartments in older mice. Our finding suggests an unrecognized critical role of DJ‐1 in regulating immunoaging, discovering a potent target to interfere with immunoaging‐ and aging‐associated diseases.  相似文献   

18.
Listeria monocytogenes is a facultative intracellular pathogen capable of inducing a robust cell-mediated immune response to sub-lethal infection. The capacity of L. monocytogenes to escape from the phagosome and enter the host cell cytosol is paramount for the induction of long-lived CD8 T cell–mediated protective immunity. Here, we show that the impaired T cell response to L. monocytogenes confined within a phagosome is not merely a consequence of inefficient antigen presentation, but is the result of direct suppression of the adaptive response. This suppression limited not only the adaptive response to vacuole-confined L. monocytogenes, but negated the response to bacteria within the cytosol. Co-infection with phagosome-confined and cytosolic L. monocytogenes prevented the generation of acquired immunity and limited expansion of antigen-specific T cells relative to the cytosolic L. monocytogenes strain alone. Bacteria confined to a phagosome suppressed the production of pro-inflammatory cytokines and led to the rapid MyD88-dependent production of IL-10. Blockade of the IL-10 receptor or the absence of MyD88 during primary infection restored protective immunity. Our studies demonstrate that the presence of microbes within a phagosome can directly impact the innate and adaptive immune response by antagonizing the signaling pathways necessary for inflammation and the generation of protective CD8 T cells.  相似文献   

19.
Research in the last few years has revealed that leukaemic cells can remodel the bone marrow niche into a permissive environment favouring leukaemic stem cell expansion. Tumour‐associated macrophages (TAMs) are prominent components of the tumour microenvironment and play an important role in the onset and progression of solid tumours. However, little is known about their role in the development of acute lymphoblastic leukaemia (ALL). Using a unique mouse model of T‐ALL induced by injection of EL4 T‐cell lymphoma cells to syngeneic C57BL/6 mice, we report herein that ALL leads to the invasion of leukaemia‐associated monocyte‐derived cells (LAMs) into the bone marrow and spleen of T‐ALL mice. Furthermore, we found that leukaemia cells could polarize bone marrow–derived macrophages (BMDMs) into LAMs. In turn, LAMs were able to protect leukaemia cells from drug‐induced apoptosis in vitro. Therapies targeted against the TAMs by inhibiting colony stimulating factor‐1 receptor (CSF‐1R) have emerged as a promising approach for cancer treatment. In this study, we demonstrate that CSF‐1R inhibition inhibits the viability of BMDMs, blocks LAMs polarization and reduces the abundance of LAMs in T‐ALL mice. In vivo, combination treatment of CSF‐1R inhibitor and vincristine (VCR) dramatically increased the survival of T‐ALL mice and delayed leukaemia progression compared with VCR monotherapy. Finally, these data reinforce the role of microenvironments in leukaemia and suggest that macrophages are a potential target for the development of novel therapeutic strategies in T‐ALL.  相似文献   

20.
Cytoskeletal cross-talk in the control of T cell antigen receptor signaling   总被引:1,自引:0,他引:1  
T cell antigen receptor signaling is triggered and controlled in specialized cellular interfaces formed between T cells and antigen-presenting cells named immunological synapses. Both microtubules and actin cytoskeleton rearrange at the immunological synapse in response to T cell receptor triggering, ensuring in turn the accuracy of intracellular signaling. Recent reports show that the cross-talk between the cortical actin cytoskeleton and microtubule networks is key for structuring the immunological synapse and for controlling T cell receptor signaling. Immunological synapse architecture and the interaction between the signaling machinery and various cytoskeletal elements are therefore crucial for the fine-tuning of T cell signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号