首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of temperature on the development (egg–adult emergence) of Gonatocerus morgani Triapitsyn, a newly-described parasitoid of Homalodisca vitripennis (Germar), were determined at 14.8, 18.7, 23.5, 26.9, 28.7, 30.4, 32.8, and 33.8 °C in the laboratory. Survival rate (percent adult emergence from parasitized host eggs) varied significantly among the experimental temperatures, with the highest (59%) and lowest (0%) occurring at 30.4 and 33.8 °C, respectively. The survival rates (%) were fitted with a polynomial model to describe a temperature-dependent pattern. Developmental rates (1/d) across seven temperatures were fitted with the nonlinear Briere model, which estimated the lower threshold to be 8.06 °C, the optimal temperature to be 29.22 °C, and the upper threshold to be 33.49 °C. A linear model fitted to developmental rates at 14.8–28.7 °C indicated that 189.75 degree-days above the lower threshold of 9.71 °C were required to complete development. A simulation model of G. morgani adult emergence was constructed to predict daily counts over the entire range of constant temperatures by incorporating the survival rate model, the Briere model, and the Weibull model. In outdoor validation, a degree-day model for predicting adult emergence showed ?2 d differences between prediction and observation. Based on the observed temperature requirement, the insect could complete thirteen to sixteen generations per year in southern California, depending on weather and location.  相似文献   

2.
Paratlanticus ussuriensis eggs overwinter by entering diapause, which can be prolonged to more than 1 year depending on environmental conditions. To determine temperature effects on diapause duration of P. ussuriensis eggs, the rates of embryonic development and hatching were compared at various temperatures conditions by measuring embryonic stages and egg weights. Most eggs stayed in a very young stage (blastoderm formation, stage 4) when reared at 15 and 20 °C, 10–30% eggs developed into middle or late stages when reared at 25 °C, and most embryos developed fully (stage 23/24) when reared at 30 °C. Egg weight at 30 °C was 1.5 times higher than those reared at 20 °C. Chilling induced hatching in embryos at stage 23/24. Chilling caused stage 4 embryos to develop into stage 24, but they failed to hatch in response to a second warm period. Thus, P. ussuriensis eggs can overwinter either as young embryos (initial diapause) or as fully-developed embryos (final diapause). Eggs that experience an initial diapause overwinter again the second year in a final stage diapause. The post-diapause period was shorter when embryos overwintered in a final stage diapause. The hatching rate was highest in a temperature range of 7.5–15 °C. Our results suggest that temperature is an important environmental factor for the control of prolonged diapause in P. ussuriensis and initial diapause plays an important role in the control of its life cycle.  相似文献   

3.
We used eggs of Deinagkistrodon acutus to study the effects of incubation temperature on hatching success, embryonic expenditure of energy and hatchling phenotypes. One egg from each of the 15 fertile clutches was dissected for determination of egg composition, and a total of 164 eggs were incubated at five constant temperatures. Embryonic mortality increased dramatically at 30 °C, and none of eggs incubated at 32 °C hatched. Within the range from 24 to 30 °C, temperature affected incubation length and most hatchling traits examined. The mean incubation length at 24, 26, 28 and 30 °C was 36.4, 28.7, 21.8 and 15.7 days, respectively. Embryos developing at higher temperatures (28 and 30 °C) consumed more energy but produced less developed (and hence smaller) hatchlings, which characteristically had larger residual yolks but smaller carcasses. A principal component analysis resolved two components (with eigenvalues ⩾1) from ten size (initial egg mass)-free hatchling variables, accounting for 79.3% of variation in the original data. The first component (43.8% variance explained) had high positive loading for size-free values of dry mass, lipid mass, energy contents and ash mass of hatchlings, and the second component (35.5% variance explained) had high positive loading for size-free values of SVL, carcass dry mass and fatbody dry mass. Hatchlings from different incubation temperatures did not differ in scores on the first axis of the principal component analysis, whereas hatchlings from higher incubation temperatures (28 and 30 °C) had significantly lower scores on the second axis than did those from lower incubation temperatures (24 and 26 °C). As the second axis mainly represents traits relating to the developmental condition at hatching, the analysis therefore provided further evidence that eggs incubated at higher temperatures produced less developed hatchlings. Taken together, our data show that the optimal temperatures for embryonic development are relatively low in D. acutus largely due to its use of relatively cool habitats.  相似文献   

4.
Studies examining the effects of incubation temperature fluctuation on the phenotype of hatchling reptiles have shown species variation. To examine whether incubation temperature fluctuation has a key role in influencing the phenotype of hatchling Chinese skinks (Plestiodon chinensis), we incubated eggs produced by 20 females under five thermal regimes (treatments). Eggs in three treatments were incubated in three incubators, one set constant at 27 °C and two ramp-programmed at 27±3 °C and 27±5 °C on a cycle of 12 h (+) and 12 h (−). The remaining eggs were incubated in two chambers: one inside a room where temperatures varied from 23.0 to 31.1 °C, with a mean of 27.0 °C; the other outside the room where temperatures varied from 20.2 to 35.3 °C, with a mean of 26.1 °C. We found that: (1) for eggs at a given embryonic stage at ovipositon, the mean rather than the variance of incubation temperatures determined the length of incubation; (2) most (egg mass, embryonic stage at oviposition, incubation length and all examined hatchling traits except tail length and locomotor performance) of the examined variables were affected by clutch; and (3) body mass was the only hatchling trait that differed among the five treatments, but the differences were tiny. These findings suggest that incubation temperature fluctuation has no direct role in influencing incubation length and hatchling phenotype in P. chinensis.  相似文献   

5.
Increasing incubation temperatures, caused by global climate change or thermal effluent from industrial processes, may influence embryonic development of fish. This study investigates the cumulative effects of increased incubation temperature and repeated heat shocks on developing Lake Whitefish (Coregonus clupeaformis) embryos. We studied the effects of three constant incubation temperatures (2 °C, 5 °C or 8 °C water) and weekly, 1-h heat shocks (+3 °C) on hatching time, survival and morphology of embryos, as these endpoints may be particularly susceptible to temperature changes. The constant temperatures represent the predicted magnitude of elevated water temperatures from climate change and industrial thermal plumes. Time to the pre-hatch stage decreased as constant incubation temperature increased (148 d at 2 °C, 92 d at 5 °C, 50 d at 8 °C), but weekly heat shocks did not affect time to hatch. Mean survival rates and embryo morphometrics were compared at specific developmental time-points (blastopore, eyed, fin flutter and pre-hatch) across all treatments. Constant incubation temperatures or +3 °C heat-shock exposures did not significantly alter cumulative survival percentage (~50% cumulative survival to pre-hatch stage). Constant warm incubation temperatures did result in differences in morphology in pre-hatch stage embryos. 8 °C and 5 °C embryos were significantly smaller and had larger yolks than 2 °C embryos, but heat-shocked embryos did not differ from their respective constant temperature treatment groups. Elevated incubation temperatures may adversely alter Lake Whitefish embryo size at hatch, but weekly 1-h heat shocks did not affect size or survival at hatch. These results suggest that intermittent bouts of warm water effluent (e.g., variable industrial emissions) are less likely to negatively affect Lake Whitefish embryonic development than warmer constant incubation temperatures that may occur due to climate change.  相似文献   

6.
Pregnancy is a challenging period for egg laying squamates. Carrying eggs can encumber females and decrease their locomotor performance, potentially increasing their risk of predation. Pregnant females can potentially reduce this handicap by selecting higher temperatures to increase their sprint speed and ability to escape from predators, or to speed up embryonic development and reduce the period during which they are burdened with eggs (‘selfish mother’ hypothesis). Alternatively, females might select more stable body temperatures during pregnancy to enhance offspring fitness (‘maternal manipulation hypothesis’), even if the maintenance of such temperatures compromises a female's locomotor performance. We investigated whether pregnancy affects the preferred body temperatures and locomotor performance of female velvet geckos Amalosia lesueurii. We measured running speed of females during late pregnancy, and one week after they laid eggs at four temperatures (20°, 25°, 30° and 35 °C). Preferred body temperatures of females were measured in a cost-free thermal gradient during late pregnancy and one week after egg-laying. Females selected higher and more stable set-point temperatures when they were pregnant (mean =29.0 °C, Tset =27.8–30.5 °C) than when they were non-pregnant (mean =26.2 °C, Tset =23.7–28.7 °C). Pregnancy was also associated with impaired performance; females sprinted more slowly at all four test temperatures when burdened with eggs. Although females selected higher body temperatures during late pregnancy, this increase in temperature did not compensate for their impaired running performance. Hence, our results suggest that females select higher temperatures during pregnancy to speed up embryogenesis and reduce the period during which they have reduced performance. This strategy may decrease a female's probability of encountering predatory snakes that use the same microhabitats for thermoregulation. Selection of stable temperatures by pregnant females may also benefit embryos, but manipulative experiments are necessary to test this hypothesis.  相似文献   

7.
The thermal environment can induce substantial variation in important life-history traits. Experimental manipulation of the thermal environment can help researchers determine the contribution of this factor to phenotypic variation in life-history traits. During the reproductive season, we kept female northern grass lizards, Takydromus septentrionalis (Lacertidae), in three temperature-controlled rooms (25, 28 and 32 °C) to measure the effect of the maternal thermal environment on reproductive traits. Maternal thermal environment remarkably affected reproductive frequency and thereby seasonal reproductive output, but had little effect on reproductive traits per clutch or hatchling traits. Females kept at 32 °C produced more clutches and thus had shorter clutch intervals than females from 28 to 25 °C. Clutch size, clutch mass, relative clutch mass, egg size and hatchling traits did not vary among the three treatments. The eggs produced by the females were incubated at 27 °C and the traits of hatchlings were measured. The result that egg (offspring) size was independent of maternal thermal environments is consistent with the prediction of the optimal egg size (offspring) theory. The eggs produced by low temperature females (28 and 25 °C) took longer time to complete their post-oviposition development than did eggs produced by high temperature females (32 °C). This suggests that the eggs from low temperatures might have been laid when the embryos were at relatively early stages. Therefore, maternal thermal environment prior to oviposition could affect post-oviposition development in T. septentrionalis.  相似文献   

8.
《Journal of Asia》2014,17(4):803-810
The effect of constant temperatures on development and survival of Lista haraldusalis (Walker) (Lepidoptera: Pyralidae), a newly reported insect species used to produce insect tea in Guizhou province (China), was studied in laboratory conditions at seven temperatures (19 °C, 22 °C, 25 °C, 28 °C, 31 °C, 34 °C, and 37 °C) on Platycarya strobilacea. Increasing the temperature from 19 °C to 31 °C led to a significant decrease in the developmental time from egg to adult emergence, and then the total developmental time increased at 34 °C. Egg incubation was the stage where L. haraldusalis experienced the highest mortality at all temperatures. The survival of L. haraldusalis was significantly higher at 25 °C and 28 °C, whereas none of the eggs hatched at 37 °C. Common and Ikemoto linear models were used to describe the relationship between the temperature and the developmental rate for each immature stage of L. haraldusalis. The estimated values of the lower temperature threshold and thermal constant of the total immature stages using Common and Ikemoto linear models were 11.34 °C and 11.20 °C, and 939.85 and 950.41 degree-days, respectively. Seven nonlinear models were used to fit the experimental data to estimate the developmental rate of L. haraldusalis. Based on the biological significance for model evaluation, Ikemoto linear, Logan-6, and SSI were the best models that fitted each immature stage of L. haraldusalis and they were used to estimate the temperature thresholds. These thermal requirements and temperature thresholds are crucial for facilitating the development of factory-based mass rearing of L. haraldusalis.  相似文献   

9.
Predicted global climate change has prompted numerous studies of thermal tolerances of marine species. The upper thermal tolerance is unknown for most marine species, but will determine their vulnerability to ocean warming. Gastropods in the family Turbinidae are widely harvested for human consumption. To investigate the responses of turbinid snails to future conditions we determined critical thermal maxima (CTMax) and preferred temperatures of Turbo militaris and Lunella undulata from the tropical-temperate overlap region of northern New South Wales, on the Australian east coast. CTMax were determined at two warming rates: 1 °C/30 min and 1 °C/12 h. The number of snails that lost attachment to the tank wall was recorded at each temperature increment. At the faster rate, T. militaris had a significantly higher CTMax (34.0 °C) than L. undulata (32.2 °C). At the slower rate the mean of both species was lower and there was no significant difference between them (29.4 °C for T. militaris and 29.6 °C for L. undulata). This is consistent with differences in thermal inertia possibly allowing animals to tolerate short periods at higher temperatures than is possible during longer exposure times, but other mechanisms are not discounted. The thermoregulatory behaviour of the turban snails was determined in a horizontal thermal gradient. Both species actively sought out particular temperatures along the gradient, suggesting that behavioural responses may be important in ameliorating short-term temperature changes. The preferred temperatures of both species were higher at night (24.0 °C and 26.0 °C) than during the day (22.0 °C and 23.9 °C). As the snails approached their preferred temperature, net hourly displacement decreased. Preferred temperatures were within the average seasonal seawater temperature range in this region. However, with future predicted water temperature trends, the species could experience increased periods of thermal stress, possibly exceeding CTMax and potentially leading to range contractions.  相似文献   

10.
Amphibian populations have been declining globally for the last several decades, and climate change is often regarded as one of the most important factors driving these declines. Amphibians are particularly sensitive to climatic changes due to their physiological, ecological and behavioral characteristics. Here we performed a laboratory experiment to investigate how temperature affects ovipositing females, eggs and hatchlings in two syntopic populations of alpine newts, Ichthyosaura alpestris, and smooth newts, Lissotriton vulgaris. Female newts were assigned to two different oviposition temperatures (11 °C and 14 °C) for the duration of their oviposition period. Deposited eggs were equally divided and assigned to three different incubation temperatures (11 °C, 14 °C and 17 °C). We hypothesized that oviposition will be affected by temperature, that the combination of different oviposition and incubation temperatures may have an effect on embryonic and hatchling traits (embryonic mortality, days to hatch and hatchling length), and that these effects might differ between the two newt species. Temperature affected the number of deposited eggs in smooth newts, but not in alpine newts. Larval hatching success was not affected by oviposition or incubation temperature. Temperature effects on hatching time and hatchling length differed between the two species. These results suggest that temperature changes may have disparate effects on amphibian reproduction, even in syntopic taxa.  相似文献   

11.
The influence of temperatures on the life parameters of the solitary oothecal parasitoid Evania appendigaster, was investigated in the laboratory. Parasitized oothecae of Periplaneta americana were left to develop under seven constant temperatures: 15, 17, 20, 25, 30, 35, and 40 °C. At the end, we found that: (i) E. appendigaster was able to complete development within the temperature range of 17–34 °C; (ii) mean adult longevity decreased as temperature increased, with the temperature of 40 °C being fatal in a matter of hours; (iii) males lived longer than females between 15 and 30 °C; (iv) adult emergence rate was the highest at 25 °C, and (v) no wasps emerged at 15 or 40 °C. Non-emerged oothecae contained either unhatched eggs or dead larvae. We determined the theoretical lower developmental threshold and thermal constant for the complete development as 12.9 °C and 584.8 day-degrees for males, and 13.1 °C and 588.2 day-degrees for females, respectively. A good balance between faster development, maximum adult longevity and good egg viability was obtained between 25–30 °C, and that would be the best temperature range for rearing E. appendigaster.  相似文献   

12.
《Biological Control》2010,52(3):355-361
A new strain of the parasitoid Trichogramma pretiosum, was collected in Rio Verde County, State of Goiás, Central Brazil, and designated as T. pretiosum RV. This strain was then found to be the most effective one among several different strains of T. pretiosum tested in a parasitoid selection assay. Therefore, its biological characteristics and thermal requirements were studied, aiming at allowing its multiplication under controlled environmental conditions in the laboratory. The parasitoid was reared on eggs of Pseudoplusia includens and Anticarsia gemmatalis at different constant temperatures within an 18–32 °C temperature range. The number of annual generations of the parasitoid was also estimated at those temperatures. Results have shown that T. pretiosum RV developmental time, from egg to adult, was influenced by all temperatures tested within the range, varying from 6.8 to 20.3 days and 6.0 to 17.0 days on eggs of P. includens and A. gemmatalis, respectively. The emergence of T. pretiosum RV from eggs of A. gemmatalis was higher than 94% at all temperatures tested. When this variable was evaluated on eggs of P. includens, however, the figures were higher than that within the 18–30 °C range (more than 98%), and were also statistically higher than the emergence observed at 32 °C (90.2%). The sex ratio of the parasitoids emerged from eggs of A. gemmatalis decreased from 0.55 to 0.29 at 18–32 °C, respectively. However, for those emerged from eggs of P. includens, the sex ratio was similar (0.73, 0.72 and 0.71) at 20, 28 and 32 °C, respectively. The lower temperature threshold (Tb) and thermal constant (K) were 10.65 °C and 151.25 degree-days when the parasitoid was reared on eggs of P. includens; and 11.64 °C and 127.60 degree-days when reared on eggs of A. gemmatalis. The number of generations per month increased from 1.45 to 4.23 and from 1.49 to 4.79 when the parasitoid was reared on eggs of P. includens and A. gemmatalis, respectively, following the increases in the temperature.  相似文献   

13.
In Lake Constance, Eurasian bream Abramis brama (L.) spawn in very shallow littoral areas by the beginning of May. They attach their adhesive eggs to pebble and cobble substratum at <40 cm depth. Increasing water levels before spawning inundate bare substratum to which bream eggs may attach better than to deeper substratum covered by epilithon. Consequently, the water level increase prior to spawning should determine the amount of pristine spawning substratum available to bream and thus influence their breeding success. In order to test this hypothesis, the influence of hydrology and climate on the abundance of age-0 bream was combined with the results from field investigations on the egg survival and abundance of age-0 bream. A strong positive correlation between the mean water level increase during the spawning season of bream (April–May) and the abundance of juvenile bream was found. In contrast, the absolute water level during spawning and during the nursery stage in summer, the cumulative temperature during the egg, larval and juvenile stages and two North Atlantic Oscillation (NAO) indices did not affect the abundance of juvenile bream. The field investigations confirmed that bream eggs attach better to and have higher survival rates on bare substratum than on substratum with epilithon cover. Accordingly, eggs within a spawning habitat of bream were most abundant between 10 and 20 cm depth, where the epilithon cover was lower than at depths exceeding 30 cm. The results of this study confirm an adverse influence of epilithon cover on the attachment and subsequent survival of bream eggs and emphasize the importance of spring inundations for the successful breeding of the bream. Handling editor: J. A. Cambray  相似文献   

14.
15.
Climate change, especially winter temperature increase, may be a factor the recent occurrence and range expansion of Lycorma delicatula (White) in South Korea. Egg mortality increased as minimum winter temperature decreased. Egg mortality was highest (93.32%) in Chuncheon, where the mean minimum winter temperature was lowest. The temperature that induced complete mortality of fulgorid eggs was estimated to be ?3.44 °C on the basis of mean daily temperatures from December 2009 to February 2010 and ?12.72 °C on the basis of mean daily minimum temperatures in January 2010. Mean winter temperatures during the last 30 years have gradually increased to above the temperature for 100% mortality of the fulgorid egg. This suggests that the winter temperature increase may contribute to the successful settlement of the fulgorid in South Korea and its subsequent outbreak and expansion.  相似文献   

16.
The effect of temperature on the biology of Venturia canescens (Gravenhorst) (Hymenoptera: Ichneumonidae) is well understood under constant temperature conditions, but less so under more natural, fluctuating conditions. Herein we studied the influence of fluctuating temperatures on biological parameters of V. canescens. Parasitized fifth-instar larvae of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) were reared individually in incubators at six fluctuating temperature regimes (15–19.5 °C with a mean of 17.6 °C, 17.5–22.5 °C with a mean of 19.8 °C, 20–30 °C with a mean of 22.7 °C, 22.5–27.5 °C with a mean of 25 °C, 25.5-32.5 °C with a mean of 28.3 °C and 28.5–33 °C with a mean of 30 °C) until emergence and death of V. canescens adults. Developmental time from parasitism to adult eclosion, adult longevity and survival were recorded at each fluctuating temperature regime. In principle, developmental time decreased with an increase of the mean temperature of the fluctuating temperature regime. Upper and lower threshold temperatures for total development were estimated at 34.9 and 6.7 °C, respectively. Optimum temperature for development and thermal constant were 28.6 °C and 526.3 degree days, respectively. Adult longevity was also affected by fluctuating temperature, as it was significantly reduced at the highest mean temperature (7.0 days at 30 °C) compared to the lowest one (29.4 days at 17.6 °C). Survival was low at all tested fluctuating temperatures, apart from mean fluctuating temperature of 25 °C (37%). Understanding the thermal biology of V. canescens under more natural conditions is of critical importance in applied contexts. Thus, predictions of biological responses to fluctuating temperatures may be used in population forecasting models which potentially influence decision-making in IPM programs.  相似文献   

17.
Supplementation of host resource can be more economical method for the biological control of insect pest compared to direct release of adult parasitoids. Periodical release of non-viable cold-stored eggs of Riptortus pedestris (Fabricius) (Hemiptera: Alydidae) has been found to enhance parasitism of this pest in soybean fields. To find the optimum environmental conditions for cold storage of these host eggs, we evaluated nine different combinations of temperature (2, 6, and 10 °C) and relative humidity (high 90–95%, medium 70–75%, and low 30–35%). After 30 d of cold-storage, eggs were weighed and held at 26.6 °C and 75% relative humidity for 8 d before testing. To test the eggs’ suitability as hosts following cold storage, females of Ooencyrtus nezarae Ishii (Hymenoptera: Encyrtidae) were released individually onto batches of eggs, and parasitization rates and the development, emergence, sex ratio, adult longevity, and size of parasitoid progeny were examined. Eggs stored at high relative humidity showed less weight loss than those stored at low relative humidity. The number of eggs parasitized was highest (5.9/15) on eggs stored at 6 °C and high relative humidity. Developmental times and adult emergence were optimal on host eggs stored at 2 °C and high relative humidity. A significantly lower proportion of eggs produced male parasitoids when eggs were stored at 2 or 6 °C. Adult longevity was not affected by egg storage conditions, but adult size of progeny decreased in eggs stored at 10 °C. In conclusion, eggs of R. pedestris stored below 6 °C and with a high relative humidity maintained the best quality for parasitization by O. nezarae.  相似文献   

18.
Effect of rearing temperature on growth and thermal tolerance of Schizothorax (Racoma) kozlovi Nikolsky larvae and juveniles was investigated. The fish (start at 12 d post hatch) were reared for nearly 6 months at five constant temperatures of 10, 14, 18, 22 and 26 °C. Then juvenile fish being acclimated at three temperatures of 14, 18 and 22 °C were chosen to determine their critical thermal maximum (CTMax) and lethal thermal maximum (LTMax) by using the dynamic method. Growth rate of S. kozlovi larvae and juveniles was significantly influenced by temperature and fish size, exhibiting an increase with increased rearing temperature, but a decline with increased fish size. A significant ontogenetic variation in the optimal temperatures for maximum growth were estimated to be 24.7 °C and 20.6 °C for larvae and juveniles of S. kozlovi, respectively. The results also demonstrated that acclimation temperature had marked effects on their CTMax and LTMax, which ranged from 32.86 °C to 34.54 °C and from 33.79 °C to 34.80 °C, respectively. It is suggested that rearing temperature must never rise above 32 °C for its successful aquaculture. Significant temperature effects on the growth rate and thermal tolerance both exhibit a plasticity pattern. Determination of critical heat tolerance and optima temperature for maximum growth of S. kozlovi is of ecological significance in the conservation and aquaculture of this species.  相似文献   

19.
《Journal of Asia》2014,17(2):135-142
This study was carried out to develop temperature-driven models for immature development and oviposition of the pink citrus rust mite Aculops pelekassi (Keifer). A. pelekassi egg development times decreased as the temperature increased, ranging from 6.6 days at 16 °C to 1.9 days at 35 °C. Total nymph development times decreased from 8.2 days at 16 °C to 3.3 days at 35 °C. The egg-to-adult development durations were 14.8, 11.6, 9.7, 8.0, 7.3, 6.1, and 5.2 days at 16, 20, 24, 26, 28, 32, and 35 °C, respectively. The lower developmental threshold temperatures for eggs, nymphs, and total egg-to-adult development were calculated as 9.3, 4.3, and 6.9 °C, respectively. The thermal constants were 54.0, 101.8, and 153.8 degree days for each of the above stages. The non-linear biophysical model fitted well for the relationship between the development rate and temperature for all stages. The Weibull function provided a good fit for the distribution of development times of each stage. Temperature affected the longevity and fecundity of A. pelekassi. Adult longevity decreased as the temperature increased and ranged from 24.2 days at 16 °C to 14.6 days at 35.0 °C. A. pelekassi had a maximum fecundity of 33.1 eggs per female at 28 °C, which declined to 18.8 eggs per female at 16 °C. In addition, three temperature-dependent components for an oviposition model of A. pelekassi were developed with sub-models estimated: total fecundity, age-specific cumulative oviposition rate, and age-specific survival rate. The oviposition model, coupled with the stage emergence model, should be useful to construct a population model for A. pelekassi in the future.  相似文献   

20.
Females of several lizard species modify their body temperature during pregnancy, probably in connection with the optimisation of hatchling phenotypes. We studied variations in the temperature selected by gravid females compared with those selected by males and non-gravid females in an oviparous population of Zootoca vivipara (Jacquin, 1797) (Squamata: Lacertidae) of Northern Spain and examined the effects of incubation temperature on the phenotypic variation of hatchlings. Cloacal temperatures of gravid females active in the field were lower than those of males and non-gravid females, as well as the temperatures selected in a thermal gradient created in the laboratory (mean±s.d.: 32.33±1.27 °C for gravid females; 34.05±1.07 °C for males and non-gravid females). Effects of temperature were assessed by incubating eggs at five constant temperatures (21, 25, 29, 32 and 34 °C). Incubation time decreased as temperature increased, following a negative exponential function. Incubation temperatures also affected the hatchlings’ morphology: hatchlings incubated at 34 °C had shorter heads than those from other temperatures. Survival at 34 °C (58%) was significantly lower than at the other temperatures (mean 93%). Pregnant females select lower body temperature, approaching the temperatures that optimise hatchling phenotypes, according to predictions of the maternal manipulation hypothesis on the evolution of viviparity. The shift in preferred temperature by pregnant females would result in only a very short delay, if any, of hatching time and, because the temperature selected by pregnant females is much higher than average temperatures recorded in natural nests of Z. vivipara, egg retention considerably shortens incubation time, according to predictions of the cold-climate hypothesis. Our experimental results indicate that the two main hypotheses on the evolution of viviparity are compatible in our study model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号