首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ectotherms in water experience rates of heat transfer at least two orders of magnitude greater than in air, seriously constraining their thermoregulatory capabilities. Yet, even in water, individuals may exert control over body temperature (Tb) via behaviors such as selecting thermally favorable microhabitats. The interactions among body size, physiology, and behavior on the thermal biology of large, entirely aquatic, ectotherms is poorly understood. We tested the hypothesis that alligator snapping turtles (Macroclemmys temminckii) selected microhabitats based on temperature by comparing temperatures at sites used by turtles to temperatures at randomly selected sites. These large turtles selected a narrow range of microhabitats that were significantly warmer and less variable in temperature than random sites. Cooling trials in the laboratory indicated larger turtles equilibrated more slowly to ambient temperature (Ta) than smaller turtles. We recorded Ta and body temperature (Tb) of turtles in the field continuously throughout the year. The Tb generally conformed to Ta but there were periods when TbTa differences were great. These results suggest that while physiology and size of aquatic turtles can affect Tb transiently, microhabitat selection may be the only meaningful mechanism for large, entirely aquatic, turtles to control Tb.  相似文献   

2.
Understanding thermal biology in heterothermic endotherms requires that we accurately quantify temporal patterns of torpor use and activity. In many studies this is done using open-flow respirometry or implanted temperature sensitive transmitters. Here we report a method to quantify torpor and activity in cavity living endotherms that does not require surgery or confinement in metabolic chambers. We used temperature dataloggers affixed inside nests to record nest temperatures (Tnest) as a proxy for body temperature. We constructed nests so that animals were in direct contact with dataloggers while at rest. Passive infrared motion detectors were used to determine when animals were active in their cages outside nests. We confirmed that the approach accurately quantifies torpor patterns using open-flow respirometry. This method may prove useful in studies addressing temporal patterns of torpor use under semi-natural conditions because it results in little disruption to animals.  相似文献   

3.
We examined the contributions of alterations in daily activity and behavioral selection of microhabitat to thermoregulation in a population of the lizard, Ameiva exsul (Teiidae), by combining data on lizard activity with data on the availability of sun-shade patches and operative temperatures (Te). By comparing Te distributions predicted by “no thermoregulation” and “only thermoregulation” hypotheses to those predicted by random use of thermal habitat, we assessed the relative contributions of microhabitat selection and daily activity to regulation of body temperature (Tb). Over the course of a day lizards maintained Tb very close to optimal temperature (Tsel) despite Tes that deviated substantially from Tsel. Data demonstrating a unimodal daily activity pattern reject the hypothesis of uniform activity throughout the day. Also, lizard activity was not positively correlated with the proportion of Tes within Tsel nor negatively correlated with the absolute deviation of available Te from Tsel (de) (“only thermoregulation”). Microsite use by A. exsul deviated significantly from predictions of the “no thermoregulation” hypothesis, but our data could not reject predictions of the “only thermoregulation” hypothesis that lizards would use sun-shade patches relative to the proportion of microsites where Te is within Tsel. Also, lizards appeared to actively select sunlit and partially shaded microsites at different times of day. Thus, despite thermal constraints imposed by the habitat, A. exsul maintained high and relatively constant Tbs throughout its daily activity period and thermoregulated effectively. This appears to be generally representative of West Indian species of Ameiva.  相似文献   

4.
Body temperature has a major influence on the physiological processes, growth, reproductive output, and overall survival of ectotherms. When a habitat is altered as a result of natural or anthropogenic influences, the available temperatures in the habitat can change, thus affecting an animal's ability to thermoregulate. We studied thermoregulation in response to habitat change in a population of spotted turtles (Clemmys guttata) in Southern Ontario, Canada. Historically, the study site was ditched to draw down water levels to facilitate peat mining, and the resulting drainage ditches were the only habitat containing surface water and turtles were restricted to these drains. Recent colonization of the site by beaver (Castor canadensis) caused increases in water level and water surface area. We followed spotted turtles (N=16) outfitted with radio transmitters and iButtons to estimate body temperatures (Tb) continuously throughout the active season post-flooding. Turtle models outfitted with iButtons (N=50) were deployed in the nine available habitat types to record environmental temperatures (Te). Turtles (N=13) were tested in a thermal gradient under laboratory conditions to determine preferred body temperature range (Tset). The Tset for the population ranged from 20 °C to 26 °C. In the field, Tb was within the Tset range 28% of the time from March to October, and 67% of the time from July to August. Efficiency of thermoregulation was calculated to be highest in July and August. The habitat type with the highest thermal quality was the shallow flooded zone created by beaver damming, and the habitat with the lowest thermal quality was the drain bottom, the drains being the only aquatic habitat available prior to flooding. This study confirms that beaver flooding provided a wide variety of preferable thermal opportunities for spotted turtles. Further investigation is needed to determine the effects of flooding on spotted turtle thermoregulation during nesting and hibernation.  相似文献   

5.
Aquatic turtles worldwide are plagued with habitat loss due to development and shoreline alteration that destroys the terrestrial–aquatic linkage which they must cross to reproduce successfully. Furthermore, nesting habitat loss can concentrate nesting, increasing nest predator efficiency. We describe how the Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island created nesting habitat for Malaclemys terrapin (Diamondback Terrapin), and document nesting success in response to construction progress and the absence of raccoons and foxes, the primary nest predators. We monitored terrapin nests throughout the nesting seasons from 2002 to 2011 to determine overall and within‐nest survivorship. Female terrapins began nesting on the restoration project within 1 year but planned construction during the study eliminated some nesting areas and opened previously inaccessible areas. Overall, nest survivorship was considerably higher than mainland nesting areas due to the absence of raccoons and foxes on the island and within‐nest survivorship was similar. Egg size, hatchling size, and the frequency of shell scute anomalies were similar to other terrapin populations, suggesting normal developmental conditions on the island. We documented annual variation in hatchling size that correlated negatively with mean air temperature during the incubation season. Our results indicate that restored or created isolated island habitat can be located rapidly by terrapins and can become an important source of recruitment in regions where nesting habitat is limited and predation is high. Poplar Island illustrates how habitat loss and restoration can affect turtle populations by revealing the changes in nesting patterns and success in newly created, predator‐free habitat.  相似文献   

6.
Summary We studied aspects of the thermal biology and microhabitat selection of the endangered lizard Podarcis hispanica atrata during autumn in the field and laboratory. Body temperatures (T b ) of active lizards were within a narrow range, were largely independent of ambient temperatures, and exhibited little diel variation. Activity T b s largely coincided with the selected temperatures maintained in a laboratory thermogradient and with T b s that maximize running performance. Alternation of basking with other activities and shuttling between sun and shade were obvious aspects of thermoregulatory behaviour. Lizards shifted microhabitat use throughout the day. During early morning and late afternoon, basking lizards were restricted to rocky sites surrounded by shrubs. Near midday lizards used a wider array of microhabitats, and many moved in open grassy sites. Juveniles maintained lower activity T b s, had lower selected temperatures, and basked less frequently than the adults. Juveniles occupied open grassy patches more often than the adults. We discuss the relevance of our results for the conservation of this extremely rare lizard and the management of its habitats.  相似文献   

7.
Understanding the factors that may affect behavioural thermoregulation of endangered reptiles is important for their conservation because thermoregulation determines body temperatures and in turn physiological functions of these ectotherms. Here we measured seasonal variation in operative environmental temperature (Te), body temperature (Tb), and microhabitat use of endangered crocodile lizards (Shinisaurus crocodilurus) from a captive population, within open and shaded enclosures, to understand how they respond to thermally challenging environments. Te was higher in open enclosures than in shaded enclosures. The Tb of lizards differed between the open and shaded enclosures in summer and autumn, but not in spring. In summer, crocodile lizards stayed in the water to avoid overheating, whereas in autumn, crocodile lizards perched on branches seeking optimal thermal environments. Crocodile lizards showed higher thermoregulatory effectiveness in open enclosures (with low thermal quality) than in shaded enclosures. Our study suggests that the crocodile lizard is capable of behavioural thermoregulation via microhabitat selection, although overall, it is not an effective thermoregulator. Therefore, maintaining diverse thermal environments in natural habitats for behavioural thermoregulation is an essential measure to conserve this endangered species both in the field and captivity.  相似文献   

8.
A technique was developed to monitor and describe the relationship between core body temperature (Tc) and rumen temperature (Trum) in cattle. This relationship was assessed in cattle subjected to varying environmental temperatures and subsequent variations in dry matter and water intake. Increasing the environmental wet bulb temperature (WBT) from ambient conditions (approximately 15 °C WBT) to mild heat stress conditions (25 °C WBT) caused an increase in both Tc and Trum with significant decreases in feed intake and increases in water consumption. Despite increases in both Tc and Trum, reductions in dry matter intake, and an increase in water consumption, the relationship between Tc and Trum did not change.  相似文献   

9.
The thermal reaction norms of 4 closely related intertidal Nacellid limpets, Antarctic (Nacella concinna), New Zealand (Cellana ornata), Australia (C. tramoserica) and Singapore (C. radiata), were compared across environments with different temperature magnitude, variability and predictability, to test their relative vulnerability to different scales of climate warming. Lethal limits were measured alongside a newly developed metric of “duration tenacity”, which was tested at different temperatures to calculate the thermal reaction norm of limpet adductor muscle fatigue. Except in C. tramoserica which had a wide optimum range with two break points, duration tenacity did not follow a typical aerobic capacity curve but was best described by a single break point at an optimum temperature. Thermal reaction norms were shifted to warmer temperatures in warmer environments; the optimum temperature for tenacity (Topt) increased from 1.0°C (N. concinna) to 14.3°C (C. ornata) to 18.0°C (an average for the optimum range of C. tramoserica) to 27.6°C (C. radiata). The temperature limits for duration tenacity of the 4 species were most consistently correlated with both maximum sea surface temperature and summer maximum in situ habitat logger temperature. Tropical C. radiata, which lives in the least variable and most predictable environment, generally had the lowest warming tolerance and thermal safety margin (WT and TSM; respectively the thermal buffer of CTmax and Topt over habitat temperature). However, the two temperate species, C. ornata and C. tramoserica, which live in a variable and seasonally unpredictable microhabitat, had the lowest TSM relative to in situ logger temperature. N. concinna which lives in the most variable, but seasonally predictable microhabitat, generally had the highest TSMs. Intertidal animals live at the highly variable interface between terrestrial and marine biomes and even small changes in the magnitude and predictability of their environment could markedly influence their future distributions.  相似文献   

10.
Monitoring an individual's thermic state in the workplace requires reliable feedback of their core temperature. However, core temperature measurement technology is expensive, invasive and often impractical in operational environments, warranting investigation of surrogate measures which could be used to predict core temperature. This study examines an alternative measure of an individual's thermic state, thermal sensation, which presents a more manageable and practical solution for Australian firefighters operating on the fireground. Across three environmental conditions (cold, warm, hot & humid), 49 Australian volunteer firefighters performed a 20-min fire suppression activity, immediately followed by 20 min of active cooling using hand and forearm immersion techniques. Core temperature (Tc) and thermal sensation (TS) were measured across the rehabilitation period at five minute intervals. Despite the decline in Tc and TS throughout the rehabilitation period, there was little similarity in the magnitude or rate of decline between each measure in any of the ambient conditions. Moderate to strong correlations existed between Tc and TS in the cool (0.41, p<0.05) and hot & humid (0.57, p<0.05) conditions, however this was resultant in strong correlation during the earlier stages of rehabilitation (first five minutes), which were not evident in the latter stages. Linear regression revealed TS to be a poor predictor of Tc in all conditions (SEE=0.45–0.54 °C) with a strong trend for TS to over-predict Tc (77–80% of the time). There is minimal evidence to suggest that ratings of thermal sensation, which represent a psychophysical assessment of an individual's thermal comfort, are an accurate reflection of the response of an individual's core temperature. Ratings of thermal sensation can be highly variable amongst individuals, likely moderated by local skin temperature. In account of these findings, fire managers require a more reliable source of information to guide decisions of heat stress management.  相似文献   

11.
12.
Tropical intertidal gastropods that experience extreme and highly variable daily temperatures have evolved significant and complex heat tolerance plasticity, comprising components that respond to different timescales of temperature variation. An earlier study showed different plasticity attributes in snails from differently-heated coastlines, suggesting lifelong irreversible responses that matched habitat thermal regimes. To determine whether heat tolerance plasticity varied at a finer, within-shore spatial scale, we compared the responses of supratidal (predominantly shade-dwelling) and intertidal (frequently solar-exposed) populations of the tropical thermophilic gastropod, Echinolittorina malaccana. Snails modified lethal temperature (LT50) under warm or cool laboratory acclimation, with the overall variation in LT50 being greater in the supratidal (56.0–58.0 °C) than in the intertidal population (57.1–58.1 °C). Similar maximum LT50s expressed by the populations after warm acclimation suggest a capacity limitation under these temperature conditons. The different minimum LT50s after cool acclimation corresponded with microhabitat temperature and field acclimatization of the snails. Different responses to the same laboratory acclimation treatment imply long-term (and possibly lifelong) thermal acclimatization, which could benefit sedentary organisms that are randomly recruited as larvae from a common thermally-stable aquatic environment to thermally-unpredictable intertidal microhabitats. These findings provide another example of thermal tolerance plasticity operating at microhabitat scales, suggesting the importance of considering microhabitat thermal responses when assessing broad-scale environmental change.  相似文献   

13.
We study how species richness of arthropods relates to theories concerning net primary productivity, ambient energy, water-energy dynamics and spatial environmental heterogeneity. We use two datasets of arthropod richness with similar spatial extents (Scandinavia to Mediterranean), but contrasting spatial grain (local habitat and country). Samples of ground-dwelling spiders, beetles, bugs and ants were collected from 32 paired habitats at 16 locations across Europe. Species richness of these taxonomic groups was also determined for 25 European countries based on the Fauna Europaea database. We tested effects of net primary productivity (NPP), annual mean temperature (T), annual rainfall (R) and potential evapotranspiration of the coldest month (PETmin) on species richness and turnover. Spatial environmental heterogeneity within countries was considered by including the ranges of NPP, T, R and PETmin. At the local habitat grain, relationships between species richness and environmental variables differed strongly between taxa and trophic groups. However, species turnover across locations was strongly correlated with differences in T. At the country grain, species richness was significantly correlated with environmental variables from all four theories. In particular, species richness within countries increased strongly with spatial heterogeneity in T. The importance of spatial heterogeneity in T for both species turnover across locations and for species richness within countries suggests that the temperature niche is an important determinant of arthropod diversity. We suggest that, unless climatic heterogeneity is constant across sampling units, coarse-grained studies should always account for environmental heterogeneity as a predictor of arthropod species richness, just as studies with variable area of sampling units routinely consider area.  相似文献   

14.
The temperature dependency of the partitioning of p-alkylphenols and p-halophenols has been determined between dimyristoyl phosphatidylcholine liposomes and 0.15 M NaCl. Partition coefficients increased as a function of temperature below the endothermic phase transition temperature (Tc) of the phospholipid but decreased above this temperature. The transfer process was found to be entropy-dominated below and enthalpy-dominated above the Tc, although large negative entropy changes were observed. Regular changes in the thermodynamic functions, partition coefficients and functional group free energies occurred as a function of the alkyl chain length or size of the halogen substituent below but not above the Tc. This has tentatively been attributed to increased phenol-phospholipid interaction at the higher temperatures. The partitioning of p-fluorophenol behaved in a manner expected of fluorinated compounds, yielding relatively low partition coefficients, but it produced an additional effect of markedly lowering the Tc of dimyristoyl phosphatidylcholine. Good correlations of the partition coefficients in liposomes with those in bulk organic solvents and with molecular size of the solute have been obtained.  相似文献   

15.
Climatic factors such as temperature and humidity vary seasonally in primate habitats; thus, behavioral adjustments and microhabitat selection by primate species have been interpreted as behavioral adaptations. François' langur (Trachypithecus francoisi), a native species to southwest China and northern Vietnam, inhabits a limestone habitat with extreme climatic conditions. To understand the potential effects of climatic seasonality on this species, we collected data on the individual behavioral budgets in a T. francoisi group between January and December 2010 in Fusui County, China. Monthly, we performed 5–11 days of observation during this period, using focal animal sampling and continuous recording methods. We also recorded ambient temperature (Ta) and relative humidity (Hr) data at our study site. Results indicated that Ta and Hr were significantly correlated with each other and fluctuated dramatically on a daily, monthly, and seasonal basis. The amount of time spent resting, grooming, basking, and huddling also varied on a daily, monthly, and seasonal basis. The proportion of resting time and total sedentary activity time significantly increased at high and low Tas, respectively. The total sedentary time, resting time, and plant branch use all showed positive significant correlations with Ta. Our results suggest that behavioral adjustment and support use of T. francoisi, at least partly, were related to thermoregulation. T. francoisi minimized thermal stress through behavioral adjustments and support use. It is an adaptive behavior associated with the climatic extremes of limestone habitat. This study can potentially advise conservation management strategies in this specific habitat. Conservation efforts should focus on vegetation restoration in langurs' habitat, including those in the foothills.  相似文献   

16.
We hypothesized that distribution and microhabitat use by imperilled chub Squalius torgalensis in the Torgal stream, Portugal, during low flows, were related to spatial patchiness in physical resources and shifts in ontogenetic preferences. We mapped fish abundance and sampled microhabitat use and availability via snorkelling. We used the coefficient of dispersion in abundance, and spatial autocorrelation analyses to characterize chub distribution, and Hurdle models to relate chub presence and abundance to habitat characteristics. We showed that chub displayed an aggregated distribution, apparently in association with patchily distributed and autocorrelated physical resources, such as debris, roots and aquatic vegetation. Microhabitat use generally was unrelated to velocity, and ontogenetic differences in microhabitat use were not substantial. Nevertheless, sometimes small chub preferred low-velocity patches with coarse substrata, debris and roots, whereas large chub preferred deeper patches with roots and aquatic vegetation. Results suggest that, in low flow conditions, chub respond to resource patchiness by congregating in favourable microhabitats, and that maintenance of mosaics of patches with variable substrata, cover and depth may be important for the persistence of fish in Mediterranean streams.  相似文献   

17.
The purpose of the present study was to analyze simultaneously the temporal relationship between the changes of circadian rhythms of brown adipose tissue (BAT) thermogenesis and core temperature (Tc) by dual probe telemetric monitoring transmitters and to determine the role of endogenous arginine vasopressin (AVP) in the circadian rhythms of BAT temperature (TBAT) and Tc in male rats. The key observations in this study are: (1) Increase in TBAT commenced approximately 8 min before Tc increases at the start of transition from the light to dark phase. Whereas at the start of transition from the dark to light phase, decrease in TBAT commenced approximately 3 min before Tc decreases. The data show that circadian changes of BAT thermogenesis do indeed play a significant role in the overall maintenance of the circadian rhythm of core temperature. (2) The plasma AVP level was significantly elevated when core temperature decreases during the light phase, suggesting that endogenous AVP is involved in thermoregulatory processes during the light phase. V1a receptor antagonist could elevate core and BAT temperature during the light period, suggesting that endogenous AVP, acting through V1a receptor, could be involved in tonic thermoregulatory processes.V1a receptor antagonist can increase the blood lipid metabolism, suggesting that the mechanism of endogenous AVP in tonic thermoregulatory processes during light period could involve the suppression of lipolysis in BAT and other peripheral tissues. In summary, this study demonstrated that endogenous vasopressin contributes to reduced BAT themogenesis and body temperature in the light phase of the circadian cycle.  相似文献   

18.
To shed light on thermoadaptive properties of Salmo trutta from lake Plav (Montenegro), we undertook kinetic studies of pyruvate reduction rates and thermal stability analyses of white muscle LDH. We compared these with the data obtained for trout of the same, confirmed by us, Danubian lineage living in rivers and streams of Serbia and Montenegro. We also tested the effect of acclimation in captivity at 4 and 14 °C. The lake trout was of a typical smoltified phenotype (the size, the elongated silver colored body). At physiological substrate concentration, the breaks in the Arrhenius plots (critical temperature - Tc) correlated with acclimation temperatures or habitat water temperatures. Q10 values for temperatures above Tc were close to one, in all cases except 4 °C acclimated trout. At temperatures below Tc Q10 was close to two, except in the case of 14 °C acclimated trout. Lake trout had a highest Q10 values at temperatures below Tc. It was conspicuous that within the entire range of tested temperatures the differences in Q10 resulted from the effect of environmental temperature. Higher Q10 values were obtained with LDH isolated from trout acclimated to 4 °C compared with LDH acclimated to 14 °C. Ea values were much lower at a temperature below Tc compared with temperatures above Tc. Thermal stability of muscle LDH was lower after acclimation to 14 compared to 4 °C, while extremely high thermostability was obtained with the lake trout enzyme. Our data support the concept that Tc values have distinct physiological significance.  相似文献   

19.
Static 2H NMR spectroscopy is used to study the critical behavior of mixtures of 1,2-dioleoyl-phosphatidylcholine/1,2-dipalmitoyl-phosphatidylcholine (DPPC)/cholesterol in molar proportion 37.5:37.5:25 using either chain perdeuterated DPPC-d62 or chain methyl deuterated DPPC-d6. The temperature dependence of the first moment of the 2H spectrum of the sample made with DPPC-d62 and of the quadrupolar splittings of the chain-methyl-labeled DPPC-d6 sample are directly related to the temperature dependence of the critical order parameter η, which scales as [(Tc?T)/Tc]βc near the critical temperature. Analysis of the data reveals that for the chain perdeuterated sample, the value of Tc is 301.51 ± 0.1 K, and that of the critical exponent, βc = 0.391 ± 0.02. The line shape analysis of the methyl labeled (d6) sample gives Tc = 303.74 ± 0.07 K and βc = 0.338 ± 0.009. These values obtained for βc are in good agreement with the predictions of a three-dimensional Ising model. The difference in critical temperature between the two samples having nominally the same molar composition arises because of the lowering of the phase transition temperature that occurs due to the perdeuteration of the DPPC.  相似文献   

20.
Use of habitat is a critical component related to structure of small-mammal communities, with partitioning occurring primarily along dimensions of microhabitat, although use of microhabitat often does not explain fully use at a macrohabitat level. Through grid studies of small mammals in coastal Colima, Mexico (during January 2003–2005), we appraised influence of available habitat, species richness, abundance, and cumulative abundance of other small mammals on variation in habitat used by species. We evaluated 14 habitat variables (reflecting ground cover, slope, canopy, and vegetation density on vertical and horizontal axes) and developed a composite variable (principal component 1) reflecting general openness of habitat through which we addressed habitat use. For the four most common mammalian species (Sigmodon mascotensis, Heteromys pictus, Baiomys musculus, and Oryzomys couesi), two measures of variation in habitat used were employed to estimate niche breadth, one of which assessed variation in habitat use relative to variation present on a grid. Sigmodon mascotensis and B. musculus preferred areas that were more open, and H. pictus and O. couesi occupied less-open areas; breadth of habitat use did not differ interspecifically. Habitat use was more variable on grids with more variability in habitat, although not greater than chance expectations. Findings do not lend support to the resource-breadth hypothesis as an explanation for population densities of species at a local level or the habitat-heterogeneity hypothesis as a predictor of species richness. Variation in habitat used by S. mascotensis did not proportionally increase when diverse habitat was available but was greater when the species was more abundant. For H. pictus, when cumulative abundance of other small mammals was greater, breadth of habitat used was greater. Intraspecific density-dependent habitat selection may result in S. mascotensis selecting a greater variety of habitats, while greater interspecific abundance is related to a greater range in use of habitats by H. pictus. Baiomys musculus used a higher proportion of habitat relative to that available when more species were present on a grid. Variation in habitat used by O. couesi was unrelated to any factor examined. Overall, the four species responded in notably different ways with respect to availability of habitat, abundance, and presence of other species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号