首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
mRNA存在多种转录后修饰,这些修饰调控mRNA的稳定和剪接、翻译、转运等多个过程,进而影响细胞发育、机体免疫、学习认知等重要生理功能。其中m6A修饰是转录后修饰中最丰富的一种,广泛存在于mRNA中,调控mRNA的代谢活动,影响基因表达。m6A修饰的稳态对神经系统的发育和功能维持至关重要。近年研究发现,在神经退行性疾病、精神疾病和脑肿瘤中均存在m6A修饰的身影。因此本文对近几年m6A甲基化修饰在中枢神经系统发育、功能及相关疾病中的作用进行总结,为神经系统疾病提供潜在的临床治疗靶点。  相似文献   

2.
3.
4.
5.
6.
N6 -methyl-adenosine (m6A) is one of the most common and abundant modifications on RNA molecules present in eukaryotes. However, the biological significance of m6A methylation remains largely unknown. Several independent lines of evidence suggest that the dynamic regulation of m6A may have a profound impact on gene expression regulation. The m6A modification is catalyzed by an unidentified methyltransferase complex containing at least one subunit methyltransferase like 3 (METTL3). m6A modification on messenger RNAs (mRNAs) mainly occurs in the exonic regions and 3’-untranslated region (3’-UTR) as revealed by high-throughput m6A-seq. One significant advance in m6A research is the recent discovery of the first two m6A RNA demethylases fat mass and obesity-associated (FTO) gene and ALKBH5, which catalyze m6A demethylation in an a-ketoglutarate (a-KG)-and Fe2+-dependent manner. Recent studies in model organisms demonstrate that METTL3, FTO and ALKBH5 play important roles in many biological processes, ranging from development and metabolism to fertility. Moreover, perturbation of activities of these enzymes leads to the disturbed expression of thousands of genes at the cellular level, implicating a regulatory role of m6A in RNA metabolism. Given the vital roles of DNA and histone methylations in epigenetic regulation of basic life processes in mammals, the dynamic and reversible chemical m6A modification on RNA may also serve as a novel epigenetic marker of profound biological significances.  相似文献   

7.
8.
Accumulating evidence has revealed that m6A modification, the predominant RNA modification in eukaryotes, adds a novel layer of regulation to the gene expression. Dynamic and reversible m6A modification implements sophisticated and crucial functions in RNA metabolism, including generation, splicing, stability, and translation in messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs). Furthermore, m6A modification plays a determining role in producing various m6A-labeling RNA outcomes, thereby affecting several functional processes, including tumorigenesis and progression. Herein, we highlighted current advances in m6A modification and the regulatory mechanisms underlying mRNAs and ncRNAs in distinct cancer stages. Meanwhile, we also focused on the therapeutic significance of m6A regulators in clinical cancer treatment.  相似文献   

9.
Epigenetics has long been a hot topic in the field of scientific research. The scope of epigenetics usually includes chromatin remodelling, DNA methylation, histone modifications, non‐coding RNAs and RNA modifications. In recent years, RNA modifications have emerged as important regulators in a variety of physiological processes and in disease progression, especially in human cancers. Among the various RNA modifications, m6A is the most common. The function of m6A modifications is mainly regulated by 3 types of proteins: m6A methyltransferases (writers), m6A demethylases (erasers) and m6A‐binding proteins (readers). In this review, we focus on RNA m6A modification and its relationship with urological cancers, particularly focusing on its roles and potential clinical applications.  相似文献   

10.
N6A methylation is the most abundant RNA modification occurring within messenger RNA. Impairment of methylase or demethylase functions are associated with severe phenotypes and diseases in several organisms. Beside writer and eraser enzymes of this dynamic RNA epigenetic modification, reader proteins that recognize this modification are involved in numerous cellular processes. Although the precise characterization of these reader proteins remains unknown, preliminary data showed that most potential reader proteins contained a conserved YT521-B homology (YTH) domain. Here we define the YTH domain of rat YT521-B as a N6-methylated adenosine reader domain and report its solution structure in complex with a N6-methylated RNA. The structure reveals a binding preference for NGANNN RNA hexamer and a deep hydrophobic cleft for m6A recognition. These findings establish a molecular function for YTH domains as m6A reader domains and should guide further studies into the biological functions of YTH-containing proteins in m6A recognition.  相似文献   

11.
12.
13.
真核生物mRNA存在多种甲基化修饰,其中N6-腺苷酸甲基化(N6-methyladenosine, m6A)修饰是最为常见的一种动态内部修饰。m6A是指RNA腺嘌呤的第6位氮原子上发生甲基化修饰,它能够动态的被甲基转移酶添加,被去甲基化酶去除,以及被甲基化阅读蛋白识别。近年来,植物m6A修饰相关的酶被陆续鉴定,研究发现m6A修饰调控植物胚胎发育、茎尖分生组织分化、开花等生长发育过程,在植物抗逆境胁迫响应中也具有重要调控作用。本文就m6A修饰相关酶的组成及其在植物生长发育和植物抗逆境胁迫过程中的功能相关研究进展进行综述,并对甘蓝型油菜中m6A修饰相关的酶进行了生物信息学分析。  相似文献   

14.
Cellular RNA is decorated with over 170 types of chemical modifications. Many modifications in mRNA, including m6A and m5C, have been associated with critical cellular functions under physiological and/or pathological conditions. To understand the biological functions of these modifications, it is vital to identify the regulators that modulate the modification rate. However, a high‐throughput method for unbiased screening of these regulators is so far lacking. Here, we report such a method combining pooled CRISPR screen and reporters with RNA modification readout, termed CRISPR integrated gRNA and reporter sequencing (CIGAR‐seq). Using CIGAR‐seq, we discovered NSUN6 as a novel mRNA m5C methyltransferase. Subsequent mRNA bisulfite sequencing in HAP1 cells without or with NSUN6 and/or NSUN2 knockout showed that NSUN6 and NSUN2 worked on non‐overlapping subsets of mRNA m5C sites and together contributed to almost all the m5C modification in mRNA. Finally, using m1A as an example, we demonstrated that CIGAR‐seq can be easily adapted for identifying regulators of other mRNA modification.  相似文献   

15.
16.
17.
N6-methyladenosine (m6A), as the most abundant RNA epigenetic modifications, has been shown to play critical roles in various biological functions. Research about enzymes that can catalyze and remove m6A have revealed its comprehensive roles in messenger RNA (mRNA) metabolism and other physiological processes. The “readers” including YTH domain-containing proteins, hnRNPC, hnRNPG, hnRNPA2B1, IGF2BP1, IGF2BP2, and IGF2BP3, which can affect the fates of mRNA in an m6A-dependent manner. In this review, we focus on recent advances in the research of the m6A modifications, especially about the latest functions of its writers, erasers, readers in RNA metabolism, cancer, and lipid metabolism. In the end, we provide insights into the underlying molecular mechanisms of m6A modifications.  相似文献   

18.
杨莹  陈宇晟  孙宝发  杨运桂 《遗传》2018,40(11):964-976
表观遗传学修饰包括DNA、RNA和蛋白质的化学修饰,基于非序列改变所致基因表达和功能水平变化。近年来,在DNA和蛋白质修饰基础上,可逆RNA甲基化修饰研究引领了第3次表观遗传学修饰研究的浪潮。RNA存在100余种化学修饰,甲基化是最主要的修饰形式。鉴定RNA甲基化修饰酶及研发其转录组水平高通量检测技术,是揭示RNA化学修饰调控基因表达和功能规律的基础。本文主要总结了近年来本课题组与合作团队及国内外同行在RNA甲基化表观转录组学研究中取得的主要前沿进展,包括发现了RNA去甲基酶、甲基转移酶和结合蛋白,揭示RNA甲基化修饰调控RNA加工代谢,及其调控正常生理和异常病理等重要生命进程。这些系列研究成果证明RNA甲基化修饰类似于DNA甲基化,具有可逆性,拓展了RNA甲基化表观转录组学研究新领域,完善了中心法则表观遗传学规律。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号