首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temperature is a key environmental factor for ectotherms and affects a large number of life history traits. In the present study, development time from hatching to pupation and adult eclosion, pupal and adult weights of the rice stem borer, Chilo suppressalis were examined at 22, 25, 28 and 31 °C under L18:D 6. Larval and pupal times were significantly decreased with increasing rearing temperature and growth rate was positively correlated with temperature. Larval and pupal developmental times were not significantly different between females and males. The relationship between body weight and rearing temperature in C. suppressalis did not follow the temperature–size rule (TSR), both males and females gained the highest body weight at 31 °C. Females were significantly larger than males at all temperatures, showing a female biased sex size dimorphism (SSD). Contrary to Rensch's rule, SSD and body weight in C. suppressalis tended to increase with rising temperature. Male pupae lost significantly more weight at metamorphosis compared to females. We discuss the adaptive significance of the reverse-TSR in the moth's life history.  相似文献   

2.
Here we present the results of the study of two Lower Toarcian carbonate sections located in the Iberian Range of central Spain. Analyses of stable isotope on belemnite calcite allowed calculation of seawater palaeotemperature variations, which were compared with the stratigraphical distribution of ostracods. These organisms are particularly sensitive to ratios of temperature and salinity variations and hence are good indicators of climate changes. From a cooling interval, with seawater temperatures of 13.2 °C recorded at the Pliensbachian?Toarcian transition, seawater temperature began to rise in the lowermost Toarcian Tenuicostatum Zone, reaching average temperatures between 14.6 °C and 16.3 °C during the time of deposition of this Zone. Coinciding with this seawater warming, up to 85% of the ostracods species progressively disappeared during a period of approximately 300 kyr, marking the extinction interval. The extinction boundary, located around the Tenuicostatum?Serpentinum zonal boundary, coincides with a marked increase in temperature in the Serpentinum Zone, on which average seawater temperatures of 22 °C have been calculated. Warming continued through part of the Middle Toarcian Bifrons Zone, reaching average temperatures of 24.7 °C. Readjustment of the ostracod population allowed recovery of these faunas in the upper Serpentinum Zone, although the extinction of a major ostracod group, the healdioids, was also recorded. The correlation between mass extinction and warming infers a causal relationship. Comparison of the results with the records of stable isotopes in belemnites and in bulk carbonates, as well as TOC and facies analysis suggests that the anoxia linked to the Early Toarcian oceanic anoxic event was not the main responsible for the ostracod mass extinction.  相似文献   

3.
Effect of rearing temperature on growth and thermal tolerance of Schizothorax (Racoma) kozlovi Nikolsky larvae and juveniles was investigated. The fish (start at 12 d post hatch) were reared for nearly 6 months at five constant temperatures of 10, 14, 18, 22 and 26 °C. Then juvenile fish being acclimated at three temperatures of 14, 18 and 22 °C were chosen to determine their critical thermal maximum (CTMax) and lethal thermal maximum (LTMax) by using the dynamic method. Growth rate of S. kozlovi larvae and juveniles was significantly influenced by temperature and fish size, exhibiting an increase with increased rearing temperature, but a decline with increased fish size. A significant ontogenetic variation in the optimal temperatures for maximum growth were estimated to be 24.7 °C and 20.6 °C for larvae and juveniles of S. kozlovi, respectively. The results also demonstrated that acclimation temperature had marked effects on their CTMax and LTMax, which ranged from 32.86 °C to 34.54 °C and from 33.79 °C to 34.80 °C, respectively. It is suggested that rearing temperature must never rise above 32 °C for its successful aquaculture. Significant temperature effects on the growth rate and thermal tolerance both exhibit a plasticity pattern. Determination of critical heat tolerance and optima temperature for maximum growth of S. kozlovi is of ecological significance in the conservation and aquaculture of this species.  相似文献   

4.
The effect of temperature on the biology of Venturia canescens (Gravenhorst) (Hymenoptera: Ichneumonidae) is well understood under constant temperature conditions, but less so under more natural, fluctuating conditions. Herein we studied the influence of fluctuating temperatures on biological parameters of V. canescens. Parasitized fifth-instar larvae of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) were reared individually in incubators at six fluctuating temperature regimes (15–19.5 °C with a mean of 17.6 °C, 17.5–22.5 °C with a mean of 19.8 °C, 20–30 °C with a mean of 22.7 °C, 22.5–27.5 °C with a mean of 25 °C, 25.5-32.5 °C with a mean of 28.3 °C and 28.5–33 °C with a mean of 30 °C) until emergence and death of V. canescens adults. Developmental time from parasitism to adult eclosion, adult longevity and survival were recorded at each fluctuating temperature regime. In principle, developmental time decreased with an increase of the mean temperature of the fluctuating temperature regime. Upper and lower threshold temperatures for total development were estimated at 34.9 and 6.7 °C, respectively. Optimum temperature for development and thermal constant were 28.6 °C and 526.3 degree days, respectively. Adult longevity was also affected by fluctuating temperature, as it was significantly reduced at the highest mean temperature (7.0 days at 30 °C) compared to the lowest one (29.4 days at 17.6 °C). Survival was low at all tested fluctuating temperatures, apart from mean fluctuating temperature of 25 °C (37%). Understanding the thermal biology of V. canescens under more natural conditions is of critical importance in applied contexts. Thus, predictions of biological responses to fluctuating temperatures may be used in population forecasting models which potentially influence decision-making in IPM programs.  相似文献   

5.
Increasing incubation temperatures, caused by global climate change or thermal effluent from industrial processes, may influence embryonic development of fish. This study investigates the cumulative effects of increased incubation temperature and repeated heat shocks on developing Lake Whitefish (Coregonus clupeaformis) embryos. We studied the effects of three constant incubation temperatures (2 °C, 5 °C or 8 °C water) and weekly, 1-h heat shocks (+3 °C) on hatching time, survival and morphology of embryos, as these endpoints may be particularly susceptible to temperature changes. The constant temperatures represent the predicted magnitude of elevated water temperatures from climate change and industrial thermal plumes. Time to the pre-hatch stage decreased as constant incubation temperature increased (148 d at 2 °C, 92 d at 5 °C, 50 d at 8 °C), but weekly heat shocks did not affect time to hatch. Mean survival rates and embryo morphometrics were compared at specific developmental time-points (blastopore, eyed, fin flutter and pre-hatch) across all treatments. Constant incubation temperatures or +3 °C heat-shock exposures did not significantly alter cumulative survival percentage (~50% cumulative survival to pre-hatch stage). Constant warm incubation temperatures did result in differences in morphology in pre-hatch stage embryos. 8 °C and 5 °C embryos were significantly smaller and had larger yolks than 2 °C embryos, but heat-shocked embryos did not differ from their respective constant temperature treatment groups. Elevated incubation temperatures may adversely alter Lake Whitefish embryo size at hatch, but weekly 1-h heat shocks did not affect size or survival at hatch. These results suggest that intermittent bouts of warm water effluent (e.g., variable industrial emissions) are less likely to negatively affect Lake Whitefish embryonic development than warmer constant incubation temperatures that may occur due to climate change.  相似文献   

6.
The influence of temperatures on the life parameters of the solitary oothecal parasitoid Evania appendigaster, was investigated in the laboratory. Parasitized oothecae of Periplaneta americana were left to develop under seven constant temperatures: 15, 17, 20, 25, 30, 35, and 40 °C. At the end, we found that: (i) E. appendigaster was able to complete development within the temperature range of 17–34 °C; (ii) mean adult longevity decreased as temperature increased, with the temperature of 40 °C being fatal in a matter of hours; (iii) males lived longer than females between 15 and 30 °C; (iv) adult emergence rate was the highest at 25 °C, and (v) no wasps emerged at 15 or 40 °C. Non-emerged oothecae contained either unhatched eggs or dead larvae. We determined the theoretical lower developmental threshold and thermal constant for the complete development as 12.9 °C and 584.8 day-degrees for males, and 13.1 °C and 588.2 day-degrees for females, respectively. A good balance between faster development, maximum adult longevity and good egg viability was obtained between 25–30 °C, and that would be the best temperature range for rearing E. appendigaster.  相似文献   

7.
The effects of temperature on the development (egg–adult emergence) of Gonatocerus morgani Triapitsyn, a newly-described parasitoid of Homalodisca vitripennis (Germar), were determined at 14.8, 18.7, 23.5, 26.9, 28.7, 30.4, 32.8, and 33.8 °C in the laboratory. Survival rate (percent adult emergence from parasitized host eggs) varied significantly among the experimental temperatures, with the highest (59%) and lowest (0%) occurring at 30.4 and 33.8 °C, respectively. The survival rates (%) were fitted with a polynomial model to describe a temperature-dependent pattern. Developmental rates (1/d) across seven temperatures were fitted with the nonlinear Briere model, which estimated the lower threshold to be 8.06 °C, the optimal temperature to be 29.22 °C, and the upper threshold to be 33.49 °C. A linear model fitted to developmental rates at 14.8–28.7 °C indicated that 189.75 degree-days above the lower threshold of 9.71 °C were required to complete development. A simulation model of G. morgani adult emergence was constructed to predict daily counts over the entire range of constant temperatures by incorporating the survival rate model, the Briere model, and the Weibull model. In outdoor validation, a degree-day model for predicting adult emergence showed ?2 d differences between prediction and observation. Based on the observed temperature requirement, the insect could complete thirteen to sixteen generations per year in southern California, depending on weather and location.  相似文献   

8.
Temperature compensation in whole-animal metabolic rate is one of the responses thought, controversially, to characterize insects from low temperature environments. Temperature compensation may either involve a change in absolute values of metabolic rates or a change in the slope of the metabolic rate – temperature relationship. Moreover, assessments of compensation may be complicated by animal responses to fluctuating temperatures. Here we examined whole animal metabolic rates, at 0 °C, 5 °C, 10 °C and 15 °C, in caterpillars of the sub-Antarctic moth, Pringleophaga marioni Viette (Tineidae), following one week acclimations to 5 °C, 10 °C and 15 °C, and fluctuating temperatures of 0–10 °C, 5–15 °C, and 10–20 °C. Over the short term, temperature compensation was found following acclimation to 5 °C, but the effect size was small (3–14%). By comparison with caterpillars of 13 other lepidopteran species, no effect of temperature compensation was present, with the relationship between metabolic rate and temperature having a Q10 of 2 among species, and no effect of latitude on temperature-corrected metabolic rate. Fluctuating temperature acclimations for the most part had little effect compared with constant temperatures of the same mean value. Nonetheless, fluctuating temperatures of 5–15 °C resulted in lower metabolic rates at all test temperatures compared with constant 10 °C acclimation, in keeping with expectations from the literature. Absence of significant responses, or those of large effect, in metabolic rates in response to acclimation, may be a consequence of the unpredictable temperature variation over the short-term on sub-Antarctic Marion Island, to which P. marioni is endemic.  相似文献   

9.
《Journal of Asia》2014,17(4):803-810
The effect of constant temperatures on development and survival of Lista haraldusalis (Walker) (Lepidoptera: Pyralidae), a newly reported insect species used to produce insect tea in Guizhou province (China), was studied in laboratory conditions at seven temperatures (19 °C, 22 °C, 25 °C, 28 °C, 31 °C, 34 °C, and 37 °C) on Platycarya strobilacea. Increasing the temperature from 19 °C to 31 °C led to a significant decrease in the developmental time from egg to adult emergence, and then the total developmental time increased at 34 °C. Egg incubation was the stage where L. haraldusalis experienced the highest mortality at all temperatures. The survival of L. haraldusalis was significantly higher at 25 °C and 28 °C, whereas none of the eggs hatched at 37 °C. Common and Ikemoto linear models were used to describe the relationship between the temperature and the developmental rate for each immature stage of L. haraldusalis. The estimated values of the lower temperature threshold and thermal constant of the total immature stages using Common and Ikemoto linear models were 11.34 °C and 11.20 °C, and 939.85 and 950.41 degree-days, respectively. Seven nonlinear models were used to fit the experimental data to estimate the developmental rate of L. haraldusalis. Based on the biological significance for model evaluation, Ikemoto linear, Logan-6, and SSI were the best models that fitted each immature stage of L. haraldusalis and they were used to estimate the temperature thresholds. These thermal requirements and temperature thresholds are crucial for facilitating the development of factory-based mass rearing of L. haraldusalis.  相似文献   

10.
Chrysoperla agilis Henry et al. is one of the five cryptic species of the carnea group found in Europe. Identification of these species is mainly based on the distinct mating signals produced by both females and males prior to copulation, although there are also morphological traits that can be used to distinguish among different cryptic species. Ecological and physiological cryptic species-specific differences may affect their potential as important biological agents in certain agroecosystems. To understand the effects of temperature on the life-history traits of C. agilis preimaginal development, adult longevity and reproduction were studied at seven temperatures. Temperature affected the development, survival and reproduction of C. agilis. Developmental time ranged from approximately 62 days at 15 °C to 15 days at 30 °C. Survival percentages ranged from 42% at 15 °C to 76% at 27 °C. One linear and five nonlinear models (Briere I, II, Logan 6, Lactin and Taylor) used to model preimaginal development were tested to describe the relationship between temperature and developmental rate. Logan 6 model fitted the data of egg to adult development best according to the criteria adopted for the model evaluation. The predicted lower developmental threshold temperatures were 11.4 °C and 11.8 °C (linear model), whereas the predicted upper threshold temperatures (Logan 6 model) were 36.6 and 36.9 °C for females and males, respectively. Adult life span, preoviposition period and lifetime cumulative oviposition were significantly affected by temperature. The effect of rearing temperature on the demographic parameters is well summarized with the estimated values of the intrinsic rate of increase (rm) which ranged from 0.0269 at 15 °C to 0.0890 at 32 °C and the highest value recorded at 27 °C (0.1530). These results could be useful in mass rearing C. agilis and predicting its population dynamics in the field.  相似文献   

11.
Rising temperatures (1.4–6 °C) due to climate change have been predicted to increase cyanobacterial bloom occurrences in temperate water bodies; however, the impacts of warming on tropical cyanobacterial blooms are unknown. We examined the effects of four different temperatures on the growth rates and microcystin (MC) production of five tropical Microcystis isolates (M. ichthyoblabe (two strains), M. viridis, M. flos-aquae, and M. aeruginosa). The temperature treatments are based on current temperature range in Singapore's reservoirs (27 °C and 30 °C), as well as projected mean (33 °C) and maximum temperatures (36 °C) based on tropical climate change estimates of +6 °C in air temperature. Increasing temperatures did not significantly affect the maximum growth rates of most Microcystis strains. Higher growth rates were only observed in one M. ichthyoblabe strain at 33 °C and M. flos-aquae at 30 °C where both were isolated from the same reservoir. MC-RR and MC-LR were produced in varying amounts by all four species of Microcystis. Raised temperatures of 33 °C were found to boost total MC cell quota for three Microcystis strains although further increase to 36 °C led to a sharp decrease in total MC cell quota for all five Microcystis strains. Increasing temperature also led to higher MC-LR:MC-RR cell quota ratios in M. ichthyoblabe. Our study suggests that higher mean water temperatures resulting from climate change will generally not influence growth rates of Microcystis spp. in Singapore except for increases in M. ichthyoblabe strains. However, toxin cell quota may increase under moderate warming scenarios depending on the species.  相似文献   

12.
Cicadulina bipunctata was originally distributed in tropical and subtropical regions of the Old World. This leafhopper recently expanded its distribution area to southern parts of temperate Japan. In this study, factors affecting the overwintering ability of C. bipunctata were examined. A series of laboratory experiments revealed that cold acclimation at 15 °C for 7 days enhanced the cold tolerance of C. bipunctata to the same level as an overwintering population, adult females were more tolerant of cold temperature than adult males, and survival of acclimated adult females was highly dependent on temperature from −5 to 5 °C and exposure duration to the temperature. The temperature of crystallization of adult females was approximately −19 °C but temperatures in southern temperate Japan rarely dropped below −10 °C in the winter, indicating that overwintering C. bipunctata adults in temperate Japan are not killed by freezing injury but by indirect chilling injury caused by long-term exposure to moderately low temperatures. An overwintering generation of C. bipunctata had extremely low overwinter survival (<1%) in temperate Japan; however, based on winter temperature ranges, there are additional areas amenable to expansion of C. bipunctata in temperate Japan.  相似文献   

13.
A 30 day feeding trial was conducted using a freshwater fish, Labeo rohita (rohu), to determine their thermal tolerance, oxygen consumption and optimum temperature for growth. Four hundred and sixteen L. rohita fry (10 days old, 0.385±0.003 g) were equally distributed between four treatments (26, 31, 33 and 36 °C) each with four replicates for 30 days. Highest body weight gain and lowest feed conversion ratio (FCR) was recorded between 31 and 33 °C. The highest specific growth rate was recorded at 31 °C followed by 33 and 26 °C and the lowest was at 36 °C. Thermal tolerance and oxygen consumption studies were carried out after completion of growth study to determine tolerance level and metabolic activity at four different acclimation temperatures. Oxygen consumption rate increased significantly with increasing acclimation temperature. Preferred temperature decided from relationship between acclimation temperature and Q10 values were between 33 and 36 °C, which gives a better understanding of optimum temperature for growth of L. rohita. Critical thermal maxima (CTMax) and critical thermal minima (CTMin) were 42.33±0.07, 44.81±0.07, 45.35±0.06, 45.60±0.03 and 12.00±0.08, 12.46±0.04, 13.80±0.10, 14.43±0.06, respectively, and increased significantly with increasing acclimation temperatures (26, 31, 33 and 36 °C). Survival (%) was similar in all groups indicating that temperature range of 26–36 °C is not fatal to L. rohita fry. The optimum temperature range for growth was 31–33 °C and for Q10 values was 33–36 °C.  相似文献   

14.
Heavy metal pollution in aquatic ecosystems is a far reaching environmental problem. The possible influences of heavy metal exposure and the potential harm to organisms when combined with other environmental stressors such as temperature have been largely unexplored. An aquatic toxicity test of Caenorhabditis elegans was performed to estimate the 24 h median lethal concentration (LC50) of different zinc concentrations at different temperatures (15 °C, 20 °C, 25 °C, and 30 °C). We also examined the time course thermotolerance on wild type (N2) and daf-21 null (JT6130) adults exposed to 6.1 mM zinc at 37 °C. Hsp90 protein expression level in response to the combined effect of temperature and zinc toxicity was also investigated by both Western blots and ELISA. Our results show that C. elegans wild type nematodes exhibit severe lethal toxicity after a 24 h exposure to zinc at higher temperatures. In addition, the expression level of Hsp90 was highly inhibited in adult worms subjected to zinc stress. This toxicity assay at different temperatures provides insight into organism response to combined effects of temperature and zinc toxicity.  相似文献   

15.
Organisms employ a wide array of physiological and behavioral responses in an effort to endure stressful environmental conditions. For many marine invertebrates, physiological and/or behavioral performance is dependent on physical conditions in the fluid environment. Although factors such as water temperature and velocity can elicit changes in respiration and feeding, the manner in which these processes integrate to shape growth remains unclear. In a growth experiment, juvenile barnacles (Balanus glandula) were raised in dockside, once-through flow chambers at water velocities of 2 versus 19 cm s−1 and temperatures of 11.5 versus 14 °C. Over 37 days, growth rates (i.e., shell basal area) increased with faster water velocities and higher temperatures. Barnacles at high flows had shorter feeding appendages (i.e., cirri), suggesting that growth patterns are unlikely related to plastic responses in cirral length. A separate experiment in the field confirmed patterns of temperature- and flow-dependent growth over 41 days. Outplanted juvenile barnacles exposed to the faster water velocities (32±1 and 34±1 cm s−1; mean±SE) and warm temperatures (16.81±0.05 °C) experienced higher growth compared to individuals at low velocities (1±1 cm s−1) and temperatures (13.67±0.02 °C). Growth data were consistent with estimates from a simple energy budget model based on previously measured feeding and respiration response curves that predicted peak growth at moderate temperatures (15 °C) and velocities (20–30 cm s−1). Low growth is expected at both low and high velocities due to lower encounter rates with suspended food particles and lower capture efficiencies respectively. At high temperatures, growth is likely limited by high metabolic costs, whereas slow growth at low temperatures may be a consequence of low oxygen availability and/or slow cirral beating and low feeding rates. Moreover, these results advocate for approaches that consider the combined effects of multiple stressors and suggest that both increases and decreases in temperature or flow impact barnacle growth, but through different physiological and behavioral mechanisms.  相似文献   

16.
This study aimed to investigate temperature effect on physiological and biochemical responses of the marine medaka Oryzias melastigma larvae. The fish were subjected to a stepwise temperature change at a rate of 1 °C/h increasing or decreasing from 25 °C (the control) to six target temperatures (12, 13, 15, 20, 28 and 32 °C) respectively, followed by a 7-day thermal acclimation at each target temperature. The fish were fed ad libitum during the experiment. The results showed that cumulative mortalities were significantly increased at low temperatures (12 and 13 °C) and at the highest temperature (32 °C). For the survivors, their growth profile closely followed the left-skewed ‘thermal performance curve’. Routine oxygen consumption rates of fish larvae were significantly elevated at 32 °C but suppressed at 13 and 15 °C (due to a high mortality, larvae from 12 °C were not examined). Levels of heat shock proteins and activities of malate dehydrogenase and lactate dehydrogenase were also measured in fish larvae exposed at 15, 25 and 32 °C. The activities of both enzymes were significantly increased at both 15 and 32 °C, where the fish larvae probably suffered from thermal discomfort and increased anaerobic components so as to compensate the mismatch of energy demand and supply at these thermal extremes. Coincidently, heat shock proteins were also up-regulated at both 15 and 32 °C, enabling cellular protection. Moreover, the critical thermal maxima and minima of fish larvae increased significantly with increasing acclimation temperature, implying that the fish could develop some degrees of thermal tolerance through temperature acclimation.  相似文献   

17.
The effect of temperature (26 °C, 28 °C, 30 °C and 35 °C) on the growth of native CAAT-3-2005 Microcystis aeruginosa and the production of Chlorophyll-a (Chl-a) and Microcystin-LR (MC-LR) were examined through laboratory studies. Kinetic parameters such as specific growth rate (μ), lag phase duration (LPD) and maximum population density (MPD) were determined by fitting the modified Gompertz equation to the M. aeruginosa strain cell count (cells mL−1). A 4.8-fold increase in μ values and a 10.8-fold decrease in the LPD values were found for M. aeruginosa growth when the temperature changed from 15 °C to 35 °C. The activation energy of the specific growth rate (Eμ) and of the adaptation rate (E1/LPD) were significantly correlated (R2 = 0.86). The cardinal temperatures estimated by the modified Ratkowsky model were minimum temperature = 8.58 ± 2.34 °C, maximum temperature = 45.04 ± 1.35 °C and optimum temperature = 33.39 ± 0.55 °C.Maximum MC-LR production decreased 9.5-fold when the temperature was increased from 26 °C to 35 °C. The maximum production values were obtained at 26° C and the maximum depletion rate of intracellular MC-LR was observed at 30–35 °C. The MC-LR cell quota was higher at 26 and 28 °C (83 and 80 fg cell−1, respectively) and the MC-LR Chl-a quota was similar at all the different temperatures (0.5–1.5 fg ng−1).The Gompertz equation and dynamic model were found to be the most appropriate approaches to calculate M. aeruginosa growth and production of MC-LR, respectively. Given that toxin production decreased with increasing temperatures but growth increased, this study demonstrates that growth and toxin production processes are uncoupled in M. aeruginosa. These data and models may be useful to predict M. aeruginosa bloom formation in the environment.  相似文献   

18.
Maintaining a constant body temperature is critical to the proper functioning of metabolic reactions. Behavioural thermoregulation strategies may minimize the cost of energetic balance when an animal is outside its thermoneutral zone. We investigated whether ambient temperature and relative air humidity influence the use of behavioural strategies by a group of Prince Bernhard's titi monkeys (Callicebus bernhardi) living in a forest fragment. We monitored a social group composed of four individuals (an adult couple and two juveniles) for 1010 h from March to September 2015. We used the instantaneous scan sampling method to record the body posture, the microhabitat, and the occurrence of huddling with group mate(s) when animals were resting. We recorded ambient temperature and relative humidity in the shade every 10 min with a data logger hanging at a height of approximately 5 m. Daytime temperature ranged from 18.5 °C to 38.5 °C and relative humidity ranged from 21% to 97%. Titi monkeys avoided sunny places at higher temperatures, especially above 31 °C. Minimum night temperature did not influence the choice of resting microhabitats during the first hour after sunrise. Sitting was the major resting posture during the day (62%). Titi monkeys increased the use of heat-dissipating postures at ambient temperatures >27 °C. In addition, an increase in relative humidity increased the use of these postures at 26 °C, 27 °C, 29 °C and 33 °C, but caused a decrease at 24 °C. On the other hand, the ambient temperature did not influence the occurrence of huddling. We conclude that microhabitat choice and postural behaviour are important for titi monkeys to prevent overheating and suggest that these behavioural adjustments might also be critical for other tropical arboreal mammals.  相似文献   

19.
The effect of temperature on Cyprinus carpio spermatozoa in vitro was investigated with spermatozoa activated at 4, 14, and 24 °C. At 30 s post-activation, motility rate was significantly higher at 4 °C compared to 14 and 24 °C, whereas highest swimming velocity was observed at 14 °C. The thiobarbituric acid-reactive substance (TBARS) content was significantly higher at 14 °C and 24 °C than at 4 °C in motile spermatozoa. No significant differences in catalase and superoxide dismutase activity relative to temperature were observed. This study provides new information regarding effect of temperature on lipid peroxidation intensity and spermatozoon motility parameters in carp. The elevation of TBARS seen at higher temperatures could be due to inadequate capacity of antioxidant enzymes to protect the cell against the detrimental effects of oxidative stress induced by higher temperatures.  相似文献   

20.
The influence of temperature on the diurnal activity of five species of aphidophagous lady beetles (Coleoptera: Coccinellidae) was investigated between 0700 and 1900 h in chili (Capsicum annuum L.) agroecosystems and neighboring vegetation (goose grass, Eleusine indica L.). The lady beetle species observed were Menochilus sexmaculatus Fabricius, Coelophora inaequalis F., Coccinella transversalis F., Harmonia octomaculata F. and Coelophora bissellata Mulsant. More lady beetles (of all species) were found during cooler periods (at 0700, 0900, 1100, and 1900 h). The diurnal pattern of lady beetle adult was temperature dependent. On chili plants, numbers were higher at temperatures between 22 to 30 °C (at 0700, 0900, 1100 and 1900 h) and numbers decreased when temperatures were above 30 °C. When temperature was above 30 °C under the chili plant canopy, numbers were higher in neighboring goose grass, where temperatures were cooler (< 30 °C). Numbers of all species were negative correlated between chili plant and goose grass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号