首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
新疆甜瓜地方种质资源遗传多样性的SRAP分析   总被引:3,自引:0,他引:3  
为研究我国新疆甜瓜地方种质资源亲缘关系及其分类,充分高效的利用种质资源,利用SRAP(sequence-related amplified polymorphism technique)标记对117份中国新疆甜瓜地方品种和28份国内外对照材料进行亲缘关系和遗传多样性分析。结果表明,20对SRAP引物共扩增出224个带,其中多态性谱带216个,多态性比率达96%,平均每对引物扩增的带数和多态性带数分别为11.2个和10.8个,每对引物的多态性信息含量PIC值为0.73~0.94,平均为0.85;不同生态区域供试材料的Nei's基因多样性指数(H)和Shannon's信息指数(I)分别为0.1075~0.2560和0.1569~0.4061,中国新疆的南疆、东疆和北疆均高于其他生态区域供试材料,且以南疆最高,具有非常丰富的遗传多样性;不同生态区域甜瓜种质资源的遗传一致度和遗传距离分别为0.6384~0.9919和0.0081~0.4488,其中南疆、东疆和北疆两两之间的遗传一致度均在0.95以上,遗传距离均在0.04以下,三者之间遗传分化较小;中国新疆甜瓜与印度、西亚、西班牙的甜瓜种质资源亲缘关系较近,与韩国、日本、美国和前苏联的甜瓜种质资源亲缘关系较远。聚类分析结果表明,以遗传相似系数0.548为阈值,145份种质材料可分为3大类群;厚皮甜瓜与薄皮甜瓜间在分子水平上没有严格的界限,两者之间亲缘关系的远近在不同的种质材料间差异很大;117份中国新疆甜瓜地方种质资源可分为A(Ⅰ-1)、B(Ⅰ-2、Ⅰ-3、Ⅰ-5)、C(Ⅰ-6)、D(Ⅱ)等4大类6个亚类群,与传统4个变种10个品种群分类结果不同,但在每个大类或亚类群中属于同一变种或品种群的材料倾向于聚在一起。  相似文献   

2.
In this study, SSR markers were used to detect genetic diversity among and within accessions of Cucurbita pepo L. 26 landraces, belonging to four groups, were studied using 14 primers SSR, to investigate the genetic structure between accessions for different part of regions in Iran. Percentage of polymorphic loci, estimated using Nei's genetic diversity index and Shannon's information index revealed moderate or high levels of genetic variations within each landraces. Biochemical characters, including seed oil, protein, sitosterol, β-sitosterol, potassium and zinc content were evaluated among accessions. Results showed a great genetic variation for biochemical traits. Seed oil and protein content were from 26.5 to 45.8% and 21.0 to 28.6% respectively. β-Sitosterol content had a high positive correlation (r = 0.97) with oil content. It ranged from 15.1 to 26.5 mg/100 g oil. There was no significant difference for biochemical traits between naked seed pumpkin and vegetable marrow morphotypes.  相似文献   

3.
A set of EST-SNPs for map saturation and cultivar identification in melon   总被引:2,自引:0,他引:2  

Background

There are few genomic tools available in melon (Cucumis melo L.), a member of the Cucurbitaceae, despite its importance as a crop. Among these tools, genetic maps have been constructed mainly using marker types such as simple sequence repeats (SSR), restriction fragment length polymorphisms (RFLP) and amplified fragment length polymorphisms (AFLP) in different mapping populations. There is a growing need for saturating the genetic map with single nucleotide polymorphisms (SNP), more amenable for high throughput analysis, especially if these markers are located in gene coding regions, to provide functional markers. Expressed sequence tags (ESTs) from melon are available in public databases, and resequencing ESTs or validating SNPs detected in silico are excellent ways to discover SNPs.

Results

EST-based SNPs were discovered after resequencing ESTs between the parental lines of the PI 161375 (SC) × 'Piel de sapo' (PS) genetic map or using in silico SNP information from EST databases. In total 200 EST-based SNPs were mapped in the melon genetic map using a bin-mapping strategy, increasing the map density to 2.35 cM/marker. A subset of 45 SNPs was used to study variation in a panel of 48 melon accessions covering a wide range of the genetic diversity of the species. SNP analysis correctly reflected the genetic relationships compared with other marker systems, being able to distinguish all the accessions and cultivars.

Conclusion

This is the first example of a genetic map in a cucurbit species that includes a major set of SNP markers discovered using ESTs. The PI 161375 × 'Piel de sapo' melon genetic map has around 700 markers, of which more than 500 are gene-based markers (SNP, RFLP and SSR). This genetic map will be a central tool for the construction of the melon physical map, the step prior to sequencing the complete genome. Using the set of SNP markers, it was possible to define the genetic relationships within a collection of forty-eight melon accessions as efficiently as with SSR markers, and these markers may also be useful for cultivar identification in Occidental melon varieties.  相似文献   

4.
There are approximately 100 species and 10,000 cultivars of Lilium and in general their phylogeny is understood. Difficulties remain, however, in understanding the breeding relationships of cultivars and commercial hybrids. One solution to this problem is to identify a selection of validated and transferable SSR markers for use in genotyping. Although over 100 Lilium SSRs have been developed, they have not been validated for use with broad populations. Here, were-evaluated 112 SSRs with 69 lily accessions from different sources, and selected 70 SSRs as easy to score, transferable and polymorphic in all accessions tested. Based on the marker data from 70 SSRs, two main clusters were established for 69 accessions using TREECON, one includes Asiatic hybrids, Longiflorum × Asiatic hybrids and Asiatic local landraces (Lilium brownii, L. brownii var. giganteum, Lilium pumilum, Lilium davidii var. unicolor and Lilium lancifolium), the other is composed primarily of Oriental hybrids and Oriental × Trumpet hybrids, which is in agreement with previous studies and the breeding pedigree. The utility of the 70 SSR markers for establishing parentage and taxon identity of landraces was validated. Our study offers valuable information and validated markers for Lilium systematic classification and the establishment of identity.  相似文献   

5.
ISSR markers were applied to evaluate the genetic diversity and differentiation of 270 individuals of 27 Iranian C. melo landraces of various varietal groups include vars. inodorous, cantalupensis, reticulatus, ameri, dudaim. Genetic diversity among the studied genotypes obtained by GeneAlex analysis (H?=?0.08, I?=?0.12, Na?=?0.77, PPL?=?22.6%). Cluster analysis divided Iranian melon landraces into two main cluster. Non-sweet genotype (dudaim group) was well separated from sweet genotypes (inodorous, ameri, reticulatus, cantalupensis). The most similar genotypes were BANI and TONI (0.95) and the most dissimilar ones were GER and TS (0.58). AMOVA result showed that the percentage of genetic variation among and within Iranian melon is 69% and 31%, respectively. All landraces evaluated based on 10 morphological traits which revealed the diversity of melon varietal groups. Bayesian analysis assigned ten landraces to Pop 1, eight landraces to Pop 2 and nine melon landraces to Pop 3. Bayesian and UPGMA cluster analyses demonstrated the almost related results. Our results indicated that ISSR markers technique alongside polyacrylamide gel analysis could be helpful to discriminate varieties of melon.  相似文献   

6.
SSR分子标记检测出的花生类型内遗传变异   总被引:6,自引:0,他引:6  
花生是我国重要的食用油和蛋白质来源作物,鉴定其DNA分子多态性对品种改良和资源评价具有重要的意义。从已公布的花生Genomic-SSR和EST-SSR引物中筛选出34对引物,用来分别鉴定花生4大类型各24份共96份品种资源的分子变异,其中龙生型资源全部来自广西,普通型资源中有11份从国外引进,有13份来自广西和国内其他省市,多粒型资源只有两份来自中国,其他22份分别来自印度、美国和非洲等地,珍珠豆型资源中有22份是来自中国各地的育成品种或农家品种,有2份来自国外。研究结果为:分别有10~16对SSR引物能在4大类型花生资源中扩增出多态性DNA片段;这些多态性SSR引物都具有多位点特性;首次为SSR分子标记设立了一个新的评价指标——区别指数,多态性SSR引物的区别指数最高达0.992;资源间的平均遗传距离,多粒型为0.59,普通型为0.48,珍珠豆型为0.38,龙生型为0.17。根据遗传距离采用最长距离法对4大类型花生资源分别进行了聚类分析,构建了资源间的遗传关系图,花生4大类型可进一步分成不同类群,资源间的亲缘关系与其来源相关。观察到PM15和PMc297的扩增产物具有类型特异性,PM15能在龙生型、普通型和多粒型花生资源中扩增出多态性条带,而在珍珠豆型花生中扩增条带完全相同,PMc297也有相似的扩增结果。由于在多粒型花生资源中检测出的遗传多样性最丰富,研究结果支持西班牙专家Krapovickas 1994年公布的花生栽培种分类系统。总之在花生4大类型内资源中能检测出丰富的SSR分子标记,开发出更多的SSR分子标记将能充分揭示花生分子水平的变异,从而使花生遗传图谱构建、分子标记辅助育种成为可能。  相似文献   

7.
Population DNA fingerprinting of 48 selected North Eastern Himalayan (NEH) landrace accessions was undertaken using 41 polymorphic fluorescent dye-labelled microsatellite/Simple Sequence Repeat (SSR) markers, using a DNA Sequencer. The analysis revealed a large number of SSR alleles (576), with high mean number of alleles per locus (13.8), and Polymorphism Information Content (PIC) of 0.63, reflecting the level of diversity in the NEH accessions and the informativeness of the SSR markers. The study also led to identification of 135 unique alleles, differentiating 44 out of the 48 accessions. Five highly frequent (major) SSR alleles (umc1545 80bp, phi062 162bp, umc1367 159bp, umc2250 152bp and phi112 152bp) were detected indicating that chromosomal regions harbouring these S SR alleles might not be selectively neutral. Analysis of population genetic parameters, including Wright’s F statistics, revealed high level of genetic differentiation, very low levels of inbreeding, and restricted gene flow between the NEH landraces. AMOVA (Analysis of Molecular Variance) showed that 67 per cent of the total variation in the accessions could be attributed to within-population diversity, and the rest between the accessions. Cluster analysis of SSR data using Rogers’ genetic distance and UPGMA, showed significant genetic diversity among the landraces from Sikkim. This is the first detailed study of SSR allele frequency-based analysis of genetic diversity in the NEH maize landraces of India.  相似文献   

8.
The genetic diversity present in crop landraces represents a valuable genetic resource for breeding and genetic studies. Bottle gourd (Lagenaria siceraria) landraces in Turkey are highly genetically diverse. However, the limited genomic resources available for this crop hinder the molecular characterization of Turkish bottle gourd germplasm for its adequate conservation and management. Therefore, we evaluated the efficacy of 40 SSR markers from major cucurbit crops (Cucurbita pepo L. and Cucurbita moschata L.) in 30 bottle gourd landraces, together with 16 SRAP primer combinations. In addition, we compared the genetic relationship between bottle gourd and 31 other cucurbit accessions (11 Cucurbita maxima, 3 C. moschata, 5 C. pepo subsp. ovifera, 10 C. pepo and 2 Luffa cylindrica). Twenty-seven Cucurbita SSR markers showed transferability to bottle gourd. SSR markers amplified 59 alleles, in bottle gourd genome with an average of 1.64 alleles per locus. Together, SSR and SRAP markers amplified 453 fragments across the 61 accessions, and clearly discriminated L. siceraria and L. cylindrica from the other cucurbit species. Genetic diversity analysis separated edible cucurbit from ornamentals, while population structure analysis classified L. siceraria in two subpopulations defined by fruit shape, rather than geographical origin. The results indicated that the genomic resources available for Cucurbita species are valuable to study and preserve the genetic diversity of bottle gourd in Turkey.  相似文献   

9.
Simple sequence repeats (SSRs) are one of the most informative and widely used molecular markers in plant research. The melon draft genome has provided a powerful tool for SSR marker development in this species in which there are still not enough SSR markers. We therefore developed genome-wide SSR markers from melon, which were used for genetic diversity analysis in melon accessions and comparative mapping with cucumber and watermelon. A total of 44,265 microsatellites from the melon genome were characterized, of which 28,570 SSR markers were developed. In silico PCR analysis with these SSR markers identified 4002 and 1085 with one amplicon in cucumber and watermelon genome, respectively. With these cross-species transferable melon SSR markers, the chromosome synteny between melon and cucumber as well as watermelon was established, which revealed complicated mosaic patterns of syntenic blocks among them. We experimentally validated 384 SSR markers, from which 42 highly informative SSR ones were selected for genetic diversity and population structure analysis among 118 melon accessions. The large number of melon SSR markers developed in this study provides a valuable resource for genetic linkage map construction, molecular mapping, and marker-assisted selection (MAS) in melon. Furthermore, the cross-species transferable SSR markers could also be useful in various molecular marker-related studies in other closely related species in Cucurbitaceae family in which draft genomes are not yet available.  相似文献   

10.
The molecular genetic diversity of 404 indigenous landraces from sesame core collection in China were evaluated by 11 SRAP and 3 SSR markers, 175 fragments were generated, of which 126 were polymorphic with an average polymorphism rate of 72%. Jaccard’s genetic similarity coefficients (GS=0.7130), Nei’s gene diversity (h=0.2418) and Shannon’s Information index (I=0.3847) were calculated, a dendrogram of the 404 landraces was made, landraces from various zones were distributed throughout the dendrogram, accessions from different agro-ecological zones were indistinguishable by cluster analysis, geographical separation did not generally result in greater genetic distance, a similar pattern was obtained using principal coordinates (PCO) analysis. As to seven agro-ecological zones, the maximum Nei’s gene diversity (h = 0.2613) and Shannon index (I = 0.3980) values in zone VII indicated that they were genetically more diverse than those in other zones, while the least genetically diverse region was zone III (h = 0.1772, I = 0.2858). Nei’s genetic identity and genetic distance among landraces from seven agro-ecological zones were also analyzed, the genetic relationship of seven zones was inferred using the UPGMA method. This study demonstrated that SRAP and SSR markers were appropriate for evaluation of sesame genetic diversities. There existed extensive genetic diverse among indigenous landraces and the abundance of genetic diversity of landraces in different agro-ecological zones was various. Understanding of these characteristics of indigenous landraces in China can provide theoretical foundation for further collection, effective protection and reasonable utilization of these sesame landraces in breeding.  相似文献   

11.
Amygdalus mira (Koehne) Ricker is native to China and has many good economical traits. However, its genetic diversity information has not been extensively studied. In this study, to assess the genetic diversity and relationships of A. mira and other peach species (nineteen accessions from Zhengzhou, Henan Province and seven accessions from Harbin) we used simple sequence repeat (SSR) markers. Here, 10 SSR primers were used, and 100% of the SSR primers were polymorphic, with an average of 5.5 alleles per primer pairs, suggesting that these primers were informative for this study. Additionally, polymorphism information content (PIC) value ranged from 0.82 to 0.96 with an average of 0.91. All the accessions were clustered into two groups (cluster 1 and cluster 2) based on SSR data. Principal coordinate analysis recovered similar results that all accessions were divided into two major clusters. The genetic variations within and among populations were 63.9% and 36.1%, respectively. In conclusion, A. mira maintains high genetic variation levels. This research will be potentially useful to aid breeding and enhance the economic and ornamental value of this wild peach.  相似文献   

12.
A bacterial artificial chromosome (BAC) library was constructed for watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus) with an average insert-size of 106 kb, providing 21 haploid genome equivalents. The library was used to identify BAC clones that are anchored to probes evenly distributed on the genomes of melon or Arabidopsis. Twenty eight probes (representing 66% of the tested probes) from melon and 30 probes (65%) from Arabidopsis identified positive BAC clones. Two methods were implemented to identify SSRs from the positively hybridizing BAC clones. First, analysis of BAC end sequences revealed 37 SSRs. For the second method, pooled DNA of BACs identified by the melon probes was used to develop a shotgun library. The library was then screened with synthetic SSR oligonucleotides by hybridization. Sequence analysis of positively hybridizing shotgun clones revealed 142 different SSRs. Thirty eight SSRs were characterized using three watermelon cultivars, five plant introduction (PI) accessions of C. lanatus var lanatus and four PIs of C. lanatus var citroides. Of these, 36 (95%) were found to be polymorphic with up to six alleles per marker. Polymorphism information content values for polymorphic markers varied between 0.22 and 0.79 with an average of 0.53. The methods described herein will be valuable for the construction of a watermelon linkage map with SSRs evenly distributed on its genome that is anchored to the genomes of melon and Arabidopsis.  相似文献   

13.
Genetic diversity among 42 sorghum accessions representing landraces (19), advanced breeding lines (16), local cultivars (2) and release varieties (5) with 30 simple sequence repeat (SSR) markers revealed 7.6 mean number of alleles per locus showing 93.3% polymorphism and an average polymorphism information content of 0.78 which range from 0.22 (Xtxp12) and 0.91(Xtxp321). The average heterozygosity and effective number of alleles per locus were 0.8 and 6.65 respectively. Cluster analysis based on microsatellite allelic diversity clearly demarcated the accessions into ten clusters. A total of 24 unique alleles were obtained from seven SSR loci in 23 accessions in a size range of 110–380 bp; these unique alleles may serve as diagnostic tools for particular region of the genome of respective genotypes. Selected SSR markers from different linkage groups provided an accurate way of determining genetic diversity at the molecular level.  相似文献   

14.
15.
Ziziphus jujuba ‘Jinsixiaozao’ is one of the most elite Chinese jujube variety with a long cultivation history. There are many different types and newly developed accessions of ‘Jinsixiaozao’ reported, however the names are in chaotic. For the accurate identification of the accessions and estimating the genetic diversity, the diversity and relationships of the 45 ‘Jinsixiaozao’ accessions were evaluated by 49 morphological traits and 24 highly polymorphic genomic SSR primers. The UPGMA dendrogram based on morphological traits separated the accessions into four major groups with Euclidean distance ranging from 4.26 to 12.26. Six of 24 SSR primers produced polymorphic patterns with a total of 17 alleles. Cluster analysis using UPGMA and Jaccard‘s coefficient grouped the accessions into eight groups. The SSR markers failed to distinguish the majority of the analyzed accessions, and a negative percentage of variation was partitioned. These results indicated low genetic diversity among the collected accessions. The mantel test revealed a weak negative correlation (r = −0.051) between the morphological dissimilarity matrix and that based on SSR markers.  相似文献   

16.
Genetic relationships among 125 Spanish melon (Cucumis melo L.) accessions from a Spanish germplasm collection were assessed using a standard molecular-marker array consisting of 34 random amplified polymorphic DNA (RAPD) markers bands (19 primers) and 72 reference accessions drawn from previous studies. The reference accession array consisted of a broad range [Japanese (19) Crete (17), African (15), and USA and Europe (US/EU, 21)] of horticultural groupings (Group Cantalupensis, Group Conomon, Group Inodorus, Group Flexuosus, and Group Chito), and of melon market classes (e.g., Charentais, U.S. Western and European Shipper types, Ogen, and Galia, Honeydew, and Casaba). Spanish melon accessions (largely Casaba, Group Inodorus) were genetically distinct from the reference accessions and other Group Inodorus melons of different origins. Most African accessions showed common genetic affinities, and grouped with the Group Chito and the Group Conomon accessions examined. Those accession groupings were distinct from all other accessions belonging to Group Cantalupensis, Flexuosus, and Inodorus accessions originating from Crete, Japan, Europe, and the U.S. Genetic diversity was highest in accessions of African origin and lowest in accessions of Spanish origin. Additional RAPD markers (49 primers, 141 bands) and 22 selected agronomic traits (quantitative and qualitative) were then used to assess the genetic diversity among Spanish accessions. While cluster analysis using fruit characteristics grouped accessions into cultivars, RAPD-based genetic-distance estimate did not provide consistent accession groupings either by cultivar or geographic origin. While the highest level of polymorphism was detected among melons originating from the central region of Spain, and in the Rochet cultivar, accessions from the Andalucía region and Green cultivars were comparatively less diverse. These results indicate that the Spanish melon accessions could be used to broaden the genetic base of local and foreign Casaba germplasm, to enhance the genetic diversity of U.S and European commercial melon germplasm, and to delineate collection strategies for acquisition of additional Spanish landraces.Communicated by C. MöllersMention of trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the USDA and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

17.
A sound knowledge of the genetic diversity among germplasm is vital for strategic germplasm collection, maintenance, conservation and utilisation. Genomic simple sequence repeats (SSRs) and random amplified microsatellite polymorphism (RAMPO) markers were used to analyse diversity and relationships among 48 pepper (Capsicum spp.) genotypes originating from nine countries. These genotypes covered 4 species including 13 germplasm accessions, 30 improved lines of 4 domesticated species and 5 landraces derived from natural interspecific crosses. Out of 106 SSR markers, 25 polymorphic SSR markers (24 %) detected a total of 76 alleles (average, 3.04; range, 2–5). The average polymorphic information content (PIC) was 0.69 (range, 0.29–0.92). Seventeen RAMPO markers produced 87 polymorphic fragments with average PIC of 0.63 (range, 0.44–0.81). Dendrograms based on SSRs and RAMPOs generated two clusters. All 38 Capsicum annuum genotypes and an interspecific landrace clustered together, whereas nine non-annuum (three Capsicum frutescens, one Capsicum chinense, one Capsicum baccatum and four interspecific landraces) genotypes clustered separately. Genetic variation within non-annuum genotypes was greater than the C. annuum genotypes. Distinctness of interspecific derivative landraces grown in northeast India was validated; natural crossing between sympatric Capsicum species has been proposed as the mechanism of their origin.  相似文献   

18.
In order to evaluate the genetic diversity of sea-island cotton (Gossypium barbadense), 237 commonly mapped SSR markers covering the cotton genome were used to genotype 56 sea-island cotton accessions. A total of 218 polymorphic primer pairs (91.98%) amplified 361 loci, with a mean of 1.66 loci. Polymorphism information content values of the SSR primers ranged from 0.035 to 0.862, with a mean of 0.320. The highest mean polymorphism information content value for the SSR motifs was from a compound motif (0.402), and for the chromosomes it was Chr10 (0.589); the highest ratio of polymorphic primers in Xinjiang accessions was from Chr21 (83.33%). Genetic diversity was high in Xinjiang accessions. AMOVA showed that variation was 8 and 92% among populations and within populations, respectively. The 56 sea-island accessions were divided into three groups in the UPGMA dendrogram: Xinhai5 was in the first group; accessions from Xinjiang, except the five main ones, were in the second group, and the other 34 accessions were in the third group. Accessions from the former Soviet Union and Xinjiang main accessions were closely related. Both PCA and UPGMA confirmed that Xinhai5 was distinct from the other accessions, and accessions from Xinjiang were in an independent group. Given the differences between principal components analysis and UPGMA results, it is necessary to combine molecular markers and pedigree information so that genetic diversity can be objectively analyzed.  相似文献   

19.
To better understand the genetic diversity and relationships of the two cultivated types of Perilla crop and their weedy types in Korea and Japan, we evaluated the genetic variations of 56 accessions by assessing five morphological characteristics and 18 SSR markers. The two cultivated types of var. frutescens and var. crispa were clearly distinguished by seed size, whereas most accessions of cultivated and weedy types of var. crispa cannot be distinguished strictly by seed characteristics. A total of 165 alleles with the SSR analysis were detected with an average number of 9.2 alleles per locus among the 56 Perilla accessions. The number of alleles per locus ranged from two for KWPE-56 and KWPE-39 to 21 for GBPFM-204. Additionally, the genetic diversity of each locus ranged from 0.497 at KWPE-56 and KWPE-39 to 0.959 at GBPFM-204, with an average of 0.692. The average genetic diversity values were 0.549, 0.685, 0.451 and 0.557 for cultivated and weedy types of var. frutescens and for cultivated and weedy types of var. crispa, respectively. The weedy type accessions of var. frutescens and var. crispa evidenced greater variation than the corresponding cultivated type accessions. The accessions of the cultivated and weedy types of var. frutescens and var. crispa from Korea exhibited greater SSR diversity than those of Japan. An UPGMA phylogenetic tree revealed three major groups, which was congruent with their morphological characteristics except for a few odd accessions. SSR markers clarified the genetic relationships between var. frutescens and var. crispa and helped improve our understanding of the genetic diversity of the two cultivated types of P. frutescens and their weedy types in Korea and Japan.  相似文献   

20.
Maldandi is a popular sorghum variety for post-rainy or rabi cultivation in southern and central states of India, which is predominantly used for food purpose. Over time many landraces have been collected from these states which have vernacular connection with Maldandi. Genetic diversity among 82 Maldandi landraces, collected from such geographical regions was evaluated using both morphological (quantitative and qualitative) and SSR markers. In general, both morphological and SSR diversity revealed wide variability among the accessions studied. Euclidean distances based on 17 quantitative traits classified the accessions into two major clusters with two out groups, while the 19 qualitative traits clustered the accessions in one major cluster with six out groups. Sixteen out of 20 (80%) SSR markers detected polymorphism among the accessions with average PIC value of 0.36. Un-weighted neighbor joining clustering grouped the accessions into three clusters with 46, 16 and 17 accessions, respectively throwing three outliers. Average similarity coefficients of 0.62 and 0.34 based on morphological (qualitative) and SSR data indicated presence of wide variability among the Maldandi landraces. The standard check, M 35?C1 (a selection from the original Maldandi) could not be differentiated from EP 98, LG 2, LG 10, IS 4509 and IS 40791 based on qualitative data alone, while EP 54 and IS 33839 were indistinguishable from M 35?C1 solely using SSR markers. Either of the dendrogram threw unique grouping patterns with some identity. Thirteen promising Maldandi accessions selected based on field performance as well as morphological and molecular diversity could be used in the rabi improvement programme. SSR markers combined with morphological traits may effectively be used for designing breeding strategy and management of biodiversity and conservation of Maldandi genetic resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号