首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Red groupers (Epinephelus akaara Temminck & Schlegel) and black sea breams (Mylio macrocephalus Basilewsky) were transferred from 30‰ into 3, 7, 12, 20, and 30‰ salinity. Fish were sampled at 0, 6, 24, 96, 168 and 336h after transfer. Serum osmolality, glucose, protein, Na+, K+, Ca2+, liver glycogen, liver protein, muscle water and haematocrit were determined. In general, transient disturbances in these variables were observed after transfer. For both species, no tissue hydration was observed upon acclimation to different salinities, whereas a progressive increase in haematocrit value was found as salinity decreased. Liver glycogen of both species, however, was higher in hypo-osmotic salinities. Serum Na+ of the red groupers declined upon acclimation to 7‰ salinity but the opposite was found for the black sea breams. The results indicate that both species are extremely euryhaline, and physiological stress is unlikely to occur within the salinity regime of 7 to 30‰ Comparatively, the black sea bream appears to be a more efficient osmoregulator.  相似文献   

2.
Ninety‐nine swordspine snook Centropomus ensiferus (9.80 ± 0.3 g, mean ± SE) were studied in order to evaluate the influence of salinity on physiological properties under rearing conditions. Growth performance, survival rates, and ion concentrations (Na+, K+, Cl?) as well proximal composition were measured over 76 days. Fish were exposed to three experimental salinities (0, 10, 20 ‰ , three replicates per treatment) and maintained in plastic tanks with a recirculation system equipped with flow‐through aquaria pumps (533 L per tank). Fish were fed twice daily to apparent satiation; at the end of the experiment the weight of fish kept in 10 ‰ was higher than that of fish kept in 0 and 20 ‰ , however no significant differences (P > 0.05) were observed among the experimental salinities. Survival was significantly lower in 10 ‰ salinity than in fish kept in 20 and 0 ‰ salinities. No significant differences (P > 0.05) were found in the Condition factor (K), specific growth rate (SGR), or in plasma Na+, K+, or Cl? concentrations among treatments. Salinities also did not affect body composition (P > 0.05), but were significantly lower (P < 0.05) than at the start of the experiment. However, towards the end of the experiment a large accumulation of visceral fat in fish farmed in the three salinities (VFI > 4%) was observed. Water quality was within the optimum range (T: 28.7 ± 0.1°C; O2: 5.6 ± 0.1 mg L?1; ammonia: 0.2 mg L?1) for the growth of swordspine snook. Data indicates that Censiferus is an ionoregulator fish and able to cultivate successfully in various osmotic conditions, and in turn, maintain high levels of survival in captivity.  相似文献   

3.
With an emphasis on the tight junction protein occludin, the response of goldfish following abrupt exposure (0–120 h) as well as long-term acclimation (14 and 28 days) to ion-poor water (IPW) was examined. Both abrupt and long-term exposure to IPW lowered serum osmolality, [Na+] and [Cl], and elevated serum glucose. After abrupt exposure to IPW, gill tissue exhibited a prompt and sustained decrease in Na+–K+–ATPase activity, and a transient increase in occludin expression that returned to control levels by 6 h. Following 14 and 28 days in IPW, gill occludin expression was markedly elevated, while Na+–K+–ATPase activity was only significantly different (elevated) at day 14. Kidney tissue exhibited an elevation in both Na+–K+–ATPase activity and occludin expression after 28 days; however, in the intestine, occludin expression declined at day 14 but did not differ from FW fish at day 28. These studies demonstrate that goldfish can tolerate abrupt as well as sustained exposure to ion-poor surroundings. Data also suggests that occludin may play an adaptive role in fishes acclimated to ion-poor conditions by contributing to the modulation of epithelial barrier properties in ionoregulatory tissues. Helen Chasiotis and Jennifer C. Effendi contributed equally to this work.  相似文献   

4.
Salinity tolerance in wild (Glendale) and hatchery (Quinsam) pink salmon Oncorhynchus gorbuscha (average mass 0·2 g) was assessed by measuring whole body [Na+] and [Cl?] after 24 or 72 h exposures to fresh water (FW) and 33, 66 or 100% sea water (SW). Gill Na+, K+‐ATPase activity was measured following exposure to FW and 100% SW and increased significantly in both populations after a 24 h exposure to 100% SW. Whole body [Na+] and whole body [Cl?] increased significantly in both populations after 24 h in 33, 66 and 100% SW, where whole body [Cl?] differed significantly between Quinsam and Glendale populations. Extending the seawater exposure to 72 h resulted in no further increases in whole body [Na+] and whole body [Cl?] at any salinity, but there was more variability among the responses of the two populations. Per cent whole body water (c. 81%) was maintained in all groups of fish regardless of salinity exposure or population, indicating that the increase in whole body ion levels may have been related to maintaining water balance as no mortality was observed in this study. Thus, both wild and hatchery juvenile O. gorbuscha tolerated abrupt salinity changes, which triggered an increase in gill Na+, K+‐ATPase within 24 h. These results are discussed in terms of the preparedness of emerging O. gorbuscha for the marine phase of their life cycle.  相似文献   

5.
Wrasse used as cleaner fish with farmed Atlantic salmon Salmo salar can be subjected to large and rapid temperature and salinity fluctuations in late autumn and early winter, when summer-warmed surface water is affected by early snowmelt episodes. Because of their containment in sea cages, wrasse which are essentially acclimated to summer temperatures may be rapidly exposed to winter conditions. Short-term tolerance of low temperature and low salinity by three species of wrasse, goldsinny Ctenolabrus rupestris rock cook Centrolabrus exoletus corkwing Crenilabrus melops caught during the summer, and winter-caught corkwing, was investigated. A 3–day period at 30 or 32‰ salinity and temperature 8, 6 or 4° C (for summer-caught fish; 4° C only for winter-caught) was followed by a decline in salinity to 24, 16 or 8‰ over c. 36 h, followed by a further 24 h at these salinities held constant, at each of the three temperatures. Controls in 30 or 32‰ were maintained at 8, 6 or 4° C. Mortality of summer-caught corkwing and rock cook was high at 4° C, whereas the influence of salinity on mortality was small. Mortality of goldsinny was low or zero in all treatments. Surviving corkwing and rock cook after 3 days at 4° C and 32‰ salinity had elevated plasma osmolality: in summer-caught corkwing, plasma [Cl°] and [Na+] were high, whereas in rock cook only [Na+] was high. Haematocrit was low in summer-caught corkwing, high in rock cook. In survivors of all three species at the end of the experiment, values of all these parameters were comparable with those of fish at the beginning of the experiment, except that survivors at low salinity (8, 16‰) had low plasma osmolality, at all temperatures, and in surviving rock cook in these treatments haematocrit was high and plasma [Cl?] was low. Winter-caught corkwing had higher osmolality, [Na+] and [Cl?] than summer-caught corkwing; there was no difference in haematocrit. Survival of wintercaught corkwing exposed to four salinities at 4° C was much higher than that of summercaught corkwing under the same conditions. Little change in blood physiology was recorded for winter-caught corkwing, with only fish subjected to 8‰ and 4° C showing signs of osmoregulatory stress. The interspecific and seasonal differences in survival and blood physiology at low temperature and low salinity are discussed in relation to wrasse survival over winter, both in the field and in salmon farms.  相似文献   

6.
Responses of Atriplex spongiosa and Suaeda monoica to Salinity   总被引:14,自引:7,他引:7       下载免费PDF全文
The growth and tissue water, K+, Na+, Cl, proline and glycinebetaine contents of the shoots and roots of two Chenopodiaceae, Atriplex spongiosa and Suaeda monoica have been measured over a range of external NaCl salinities. Both species showed some fresh weight response to low salinity mainly due to increased succulence. S. monoica showed both a greater increase in succulence (at low salinities) and tolerance of high salinities than A. spongiosa. Both species had high affinities for Na+ and maintained constant but low shoot K+ contents with increasing salinity. These trends were more marked with S. monoica in which Na+ stimulated the accumulation of K+ in roots. An association between high leaf Na+ accumulation, high osmotic pressure, succulence, and a positive growth response at low salinities was noted. Proline accumulation was observed in shoot tissues with suboptimal water contents. High glycinebetaine contents were found in the shoots of both species. These correlated closely with the sap osmotic pressure and it is suggested that glycinebetaine is the major cytoplasmic osmoticum (with K+ salts) in these species at high salinities. Na+ salts may be preferentially utilized as vacuolar osmotica.  相似文献   

7.
The aquatic corixid Trichocorixa reticulata (Guerin-Meneville) inhabits coastal marshes, brackish water ponds and salt ponds of high salinity, suggesting the presence of well developed mechanisms for hydromineral regulation.Groups of corixids acclimated in salinities ranging from fresh water to just above 300% sea water (100‰) were analyzed for total body water content, haemolymph ionic and osmotic levels, and haemolymph free amino acids.Results indicate an excellent ability to maintain haemolymph Na+, Cl?, Mg2+ and K+ hyperosmotic to the medium at low salinities and hyposmotic at high salinities. Calcium appears to conform closely to changes in external medium, becoming hyposmotic at very high salinities (80‰).Total haemolymph osmotic pressure was well regulated, the freezing point depression varying from 0.75°C in distilled water to 1.15°C in salinities of 100‰. Total body water was maintained at approx. 75% of the total animal wet weight at all salinities tested.Free amino acids were maintained between 40–60 mM in all tests and did not appear to change with salinity.  相似文献   

8.
《Aquatic Botany》2007,87(4):292-298
The effect of salinity on leaf area and the relative accumulation of Na+ and K+ in leaves of the mangrove associate Hibiscus tiliaceus were investigated. Photosynthetic gas exchange characteristics were also examined under arid and non-arid leaf conditions at 0, 10, 20 and 30‰ substrate salinity. At salinities  40‰, plants showed complete defoliation followed by 100% mortality within 1 week. Salinities  30‰ were negatively correlated with the total leaf area per plant (r2 = 0.94). The reduction in the total plant leaf area is attributed to the reduction in the area of individual leaves (r2 = 0.94). Selective uptake of K+ over Na+ declined sharply with increasing salinity, where K+/Na+ ratio was reduced from 6.37 to 0.69 in plants treated with 0 and 30‰, respectively. Under non-arid leaf condition, increasing salinity from 0 to 30‰ has significantly reduced the values of the intrinsic components of photosynthesis Vc,max (from 50.4 to 18.4 μmol m−2 s-1), Jmax (from 118.0 to 33.8 μmol photons m−2 s−1), and VTPU (from 6.90 to 2.30 μmol m−2 s−1), while stomatal limitation to gas phase conductance (SL) increased from 14.6 to 38.4%. Water use efficiency (WUE) has subsequently doubled from 3.20 for the control plants to 8.93 for 30‰ treatment. Under arid leaf conditions, the stomatal factor (SL) was more limiting to photosynthesis than its biochemical components (73.4 to 26.6%, respectively, at 30‰). It is concluded that salinity causes a drastic decline in photosynthetic gas exchange in H. tiliaceus leaves through its intrinsic and stomatal components, and that the apparent phenotypic plasticity represented by the leaf area modulation is unlikely to be the mechanism by which H. tiliaceus avoids salt stress.  相似文献   

9.
《Aquatic Botany》2008,88(4):292-298
The effect of salinity on leaf area and the relative accumulation of Na+ and K+ in leaves of the mangrove associate Hibiscus tiliaceus were investigated. Photosynthetic gas exchange characteristics were also examined under arid and non-arid leaf conditions at 0, 10, 20 and 30‰ substrate salinity. At salinities  40‰, plants showed complete defoliation followed by 100% mortality within 1 week. Salinities  30‰ were negatively correlated with the total leaf area per plant (r2 = 0.94). The reduction in the total plant leaf area is attributed to the reduction in the area of individual leaves (r2 = 0.94). Selective uptake of K+ over Na+ declined sharply with increasing salinity, where K+/Na+ ratio was reduced from 6.37 to 0.69 in plants treated with 0 and 30‰, respectively. Under non-arid leaf condition, increasing salinity from 0 to 30‰ has significantly reduced the values of the intrinsic components of photosynthesis Vc,max (from 50.4 to 18.4 μmol m−2 s-1), Jmax (from 118.0 to 33.8 μmol photons m−2 s−1), and VTPU (from 6.90 to 2.30 μmol m−2 s−1), while stomatal limitation to gas phase conductance (SL) increased from 14.6 to 38.4%. Water use efficiency (WUE) has subsequently doubled from 3.20 for the control plants to 8.93 for 30‰ treatment. Under arid leaf conditions, the stomatal factor (SL) was more limiting to photosynthesis than its biochemical components (73.4 to 26.6%, respectively, at 30‰). It is concluded that salinity causes a drastic decline in photosynthetic gas exchange in H. tiliaceus leaves through its intrinsic and stomatal components, and that the apparent phenotypic plasticity represented by the leaf area modulation is unlikely to be the mechanism by which H. tiliaceus avoids salt stress.  相似文献   

10.
Concentrations of ions and sucrose in the vacuolar sap of Chara canescens growing in an oligohaline lake (1.5 ‰) were estimated over the main growth period of the plants. During fructification vacuolar sap contained a mean of 41 mol m?3 (range 10.2–61.8) sucrose. The mean turgor pressure was 239 mosmol kg?1 (range 219–264). In long- and short-term experiments these plants were subjected to increasing salinities up to 22 ‰. When salinity was increased from 1.5 to 4.4 ‰ turgor pressure was restored to only 80 % of the initial value. This reduced level of turgor pressure was maintained up to a salinity of 22 ‰. The increase in vacuolar osmotic potential was due to the monovalent ions Na+, K+ and Cl?. The relative amounts of Na+ and K+ participating in the regulation process were dependent on external salinity. The regulatory mechanisms observed in the brackish water species Ch. canescens are compared with those reported from freshwater and euryhaline species.  相似文献   

11.
The geographical distribution of aquatic crustaceans is determined by ambient factors like salinity that modulate their biochemistry, physiology, behavior, reproduction, development and growth. We investigated the effects of exogenous pig FXYD2 peptide and endogenous protein kinases A and C on gill (Na+, K+)-ATPase activity, and characterized enzyme kinetic properties in a freshwater population of Macrobrachium amazonicum in fresh water (<0.5 ‰ salinity) or acclimated to 21 ‰S. Stimulation by FXYD2 peptide and inhibition by endogenous kinase phosphorylation are salinity-dependent. While without effect in shrimps in fresh water, the FXYD2 peptide stimulated activity in salinity-acclimated shrimps by ≈50 %. PKA-mediated phosphorylation inhibited gill (Na+, K+)-ATPase activity by 85 % in acclimated shrimps while PKC phosphorylation markedly inhibited enzyme activity in freshwater- and salinity-acclimated shrimps. The (Na+, K+)-ATPase in salinity-acclimated shrimp gills hydrolyzed ATP at a Vmax of 54.9 ± 1.8 nmol min?1 mg?1 protein, corresponding to ≈60 % that of freshwater shrimps. Mg2+ affinity increased with salinity acclimation while K+ affinity decreased. (Ca2+, Mg2+)-ATPase activity increased while V(H+)- and Na+- or K+-stimulated activities decreased on salinity acclimation. The 120-kDa immunoreactive band expressed in salinity-acclimated shrimps suggests nonspecific α-subunit phosphorylation by PKA and/or PKC. These alterations in (Na+, K+)-ATPase kinetics in salinity-acclimated M. amazonicum may result from regulatory mechanisms mediated by phosphorylation via protein kinases A and C and the FXYD2 peptide rather than through the expression of a different α-subunit isoform. This is the first demonstration of gill (Na+, K+)-ATPase regulation by protein kinases in freshwater shrimps during salinity challenge.  相似文献   

12.
Inanga (Galaxias maculatus) is an amphidromous fish with a well-known capacity to withstand a wide range of environmental salinities. To investigate the molecular mechanisms facilitating acclimation of inanga to seawater, several isoforms of the Na+, K+-ATPase ion transporter were identified. This included three α-1 (a, b and c), an α-2 and two α-3 (a and b) isoforms. Phylogenetic analysis showed that the inanga α-1a and α-1b formed a clade with the α-1a and α-1b isoforms of rainbow trout, while another clade contained the α-1c isoforms of these species. The expression of all the α-1 isoforms was modulated after seawater exposure (28 ‰). In gills, the expression of the α-1a isoform was progressively down-regulated after seawater exposure, while the expression of the α-1b isoform was up-regulated. The α-1c isoform behaved similarly to the α-1a, although changes were less dramatic. Physiological indicators of salinity acclimation matched the time frame of the changes observed at the molecular level. A 24-h osmotic shock period was highlighted by small increases in plasma osmolality, plasma Na+ and a decrease in muscle tissue water content. Thereafter, these values returned close to their pre-exposure (freshwater) values. Na+, K+-ATPase activity showed a decreasing trend over the first 72 h following seawater exposure, but activity increased after 240 h. Our results indicate that inanga is an excellent osmoregulator, an ability that is conferred by the rapid activation of physiological and molecular responses to salinity change.  相似文献   

13.
Synopsis Blood samples from cannulated young adult (2.5–15 kg) white sturgeon, acclimated to San Francisco Bay water (24 ppt) had plasma values of 248.8 ± 13.5 mOsm kg−1 H2O, [Na+] = 125 ± 8.0 mEq 1−1, [K+] = 2.6 ± 0.8 mEq 1−1 and [CL] = 122 ± 3.0 mEq 1−1. Freshwater acclimated sturgeon had an osmolality of 236 ± 7, [Na+] = 131.6 + 4.4, [K+] = 2.5 ± 0.7 and [CL] = 110.6 ± 3.6. Freshwater acclimated fish gradually exposed to sea water (increase of 5 ppt h−1) had higher plasma osmolalities than did the bay water acclimated fish. These young adult sturgeon are able to tolerate transfer from fresh water to sea water as well as gradual transfer from sea water to fresh water. Plasma electrolytes in transferred fish are regulated, but tend to differ from long term acclimated fish at the same salinities. There is a gradual increase in the upper salinity tolerance (abrupt transfer) of juvenile white sturgeon with weight: 5–10 ppt for 0.4–0.9 g fish, 10–15 ppt for 0.7–1.8 g fish, and 15 ppt for 4.9–50.0 g fish. The ability of juveniles to regulate plasma osmolality is limited. The young adult fish are able to tolerate higher salinities (35 ppt) than juvenile sturgeon but probably are also characterized by low activity of the necessary ion exchange mechanisms in the gills which permit rapid adjustment of blood electrolytes with graduate change in external salinity.  相似文献   

14.
Transepithelial potentials (TEP) were measured in killifish, acclimated to freshwater (FW), seawater (SW), 33% SW or cycling salinities relevant to tidal cycles in an estuary, and subsequently subjected to salinity changes in progressive or random order. Random compared to progressive salinity changes in an upward or downward direction in FW- and SW-acclimated fish, respectively, did not greatly influence responses to salinity change. Fish acclimated to SW or 33% SW as well as those acclimated to cycling salinities behaved similarly (TEP more positive than +15 mV in 100% SW, decreasing to ~0 mV at 20–40% SW, and more negative than −30 mV in FW). In contrast, FW-acclimated fish displayed a less pronounced TEP response to salinity (0 mV in FW through 20% SW, increasing thereafter to values more positive than +10 mV at 100% SW). We conclude that when evaluated under estuarine tidal conditions, the killifish gill exhibits adaptive electrical characteristics, opposing Na+ loss at low salinity and favouring Na+ extrusion at high salinity, changes explained at least in part by the Cl to Na+ permeability ratio. Thus animals living in the estuaries can move to lower and higher salinities for short periods with little physiological disturbance, but this ability is lost after acclimation to FW.  相似文献   

15.
Serum osmolality and ion concentrations were measured in juvenile Chinese sturgeon Acipenser sinensis at different salinities to determine the isosmotic point. Isosmotic and isoionic concentrations were calculated from the regressions for serum and ambient osmolality, with Na+, Cl? and K+ as salinities 9·19, 8·17, 7·89 and 9·70, respectively. These values were consistent with the salinity of the habitat where juvenile A. sinensis occur in the Yangtze Estuary, suggesting that an isosmotic salinity is an important factor driving their habitat choice.  相似文献   

16.
The study tests the physiological responses of Persian sturgeon, Acipenser persicus, during the abrupt release of juveniles from freshwater (FW) into brackish waters (BW = 11‰) of the Caspian Sea. Fish weight at release was 2‐3 g (2.55 ± 0.41 g; 8.8 ± 0.58 cm TL). Totals of 160 individuals were randomly distributed into four fiber‐glass aerated tanks (volume 60‐L). Two tanks served as controls (FW groups), and two as exposure tanks for BW (Caspian Sea water = CSW). Fish were sampled at 0, 3, 6, 12, 24, 48 and 96 hr after abrupt transfer to CSW. Plasma osmolality, immunolocalization of Na+, K+ ‐ATPase (NKA) and Na+/K+/2Cl (NKCC) Co‐transporter, NKA activity and the NKA α‐subunit mRNA expression were analyzed. Blood osmolality of fish transferred from FW to CSW increased significantly within hours post‐transfer (p < .05) and remained at a high level for up to 96 hr. Immunolocalization of NKCC indicated co‐localization with NKA in the chloride cells in the gill epithelium. A partial sequence of the NKA α‐subunit (632 bp) is described. Its expression levels were up‐regulated at 12 and 48 hr following salinity transfer (p < .05). However, NKA activity sharply increased in CSW specimens by almost 2.8‐fold (p < .05) between 48 and 96 hr after transfer. Gill NKCC co‐transporter abundance increased, coinciding with increased gill NKA activity. The increased activity of NKCC during salt excretion in CSW may lead to an influx of Na+ into the chloride cells. Consequently, NKA activity increases to maintain intracellular Na+ homeostasis.  相似文献   

17.
The Gulf killifish, Fundulus grandis, is a euryhaline teleost which has important ecological roles in the brackish-water marshes of its native range as well as commercial value as live bait for saltwater anglers. Effects of osmoregulation on growth, survival, and body condition at 0.5, 5.0, 8.0 and 12.0‰ salinity were studied in F. grandis juveniles during a 12-week trial. Relative expression of genes encoding the ion transport proteins Na+/K+-ATPase (NKA), Na+/K+/2Cl cotransporter(NKCC1), and cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel was analyzed. At 0.5‰, F. grandis showed depressed growth, body condition, and survival relative to higher salinities. NKA relative expression was elevated at 7 days post-transfer but decreased at later time points in fish held at 0.5‰ while other salinities produced no such increase. NKCC1, the isoform associated with expulsion of ions in saltwater, was downregulated from week 1 to week 3 at 0.5‰ while CFTR relative expression produced no significant results across time or salinity. Our results suggest that Gulf killifish have physiological difficulties with osmoregulation at a salinity of 0.5‰ and that this leads to reduced growth performance and survival while salinities in the 5.0-12.0‰ are adequate for normal function.  相似文献   

18.
The increase in concentration of ammonia in lake water during the degradation of algal blooms may last for several weeks and thus cause chronic toxicity to aquatic organisms. The purpose of this study was to assess the chronic toxicity of ammonia on the selected hematological parameters and gill Na+/K+ ATPase activity of juvenile crucian carp Carassius auratus during elevated ammonia exposure and the post-exposure recovery. Juvenile crucian carp were exposed in different ammonia solutions for 45 days and then immediately transferred to pristine freshwater to initiate a 15-day recovery period. Results showed sub-lethal ammonia significantly deters growth and a 15-day recovery period was not sufficient for the fish to compensate for the loss of growth. The fish exhibited a continuous decrease in red blood cell (RBC), the total hemoglobin (Hb), and gill Na+/K+ ATPase activity as the concentration of NH3-N increased. After the 15-day recovery period, RBC, Hb, and gill Na+/K+ ATPase activity had recovered to similar levels as the controls.  相似文献   

19.
Three-spined sticklebacks (Gasterosteus aculeatus L.) living at the southern limit of the species distribution range could possess specific morphological and physiological traits that enable these fish to live at the threshold of their physiological capacities. Morphological analysis was carried out on samples of sticklebacks living in different saline habitats of the Camargue area (Rhone delta, northern Mediterranean coast) obtained from 1993 to 2017. Salinity acclimation capacities were also investigated using individuals from freshwater-low salinity drainage canals and from mesohaline–euryhaline lagoons. Fish were maintained in laboratory conditions at salinity values close to those of their respective habitats: low salinity (LS, 5‰) or seawater (SW, 30‰). Fish obtained from a mesohaline brackish water lagoon (BW, 15‰) were acclimated to SW or LS. Oxygen consumption rates and branchial Na+/K+-ATPase (NKA) activity (indicator of fish osmoregulatory capacity) were measured in these LS or SW control fish and in individuals subjected to abrupt SW or LS transfers. At all the studied locations, only the low-plated “leiurus” morphotype showed no spatial or temporal variations in their body morphology. Gill rakers were only longer and denser in fish sampled from the LS–freshwater (FW) drainage canals. All fish presented similar physiological capacities. Oxygen consumption rates were not influenced by salinity challenge except in SW fish transferred to LS immediately and 1 h after transfer. However, and as expected, gill NKA activity was salinity dependent. Sticklebacks of the Camargue area sampled from habitats with contrasted saline conditions are homogenously euryhaline, have low oxygen consumption rates and do not appear to experience significantly greater metabolic costs when challenged with salinity. However, an observed difference in gill raker length and density is most probably related to the nutritional condition of their habitat, indicating that individuals can rapidly acclimatize to different diets.  相似文献   

20.
We assessed the effects of dietary fatty acid composition on sodium–potassium ATPase (Na+/K+-ATPase) activity and isoform expression in the gills of juvenile fall chinook salmon, Oncorhynchus tshawytscha by supplementing diets with either anchovy oil (AO) or AO blended with canola oil (CO) so that CO comprised 0% (0CO), 11% (11CO), 22% (22CO), 33% (33CO), 43% (43CO), or 54% (54CO) of the measured dietary lipid content. The effects of diet were assessed in freshwater (FW) following 104 days of diet manipulation, in response to 24-h seawater (SW) transfer at this time, and following an additional 35 days of SW acclimation. Gill Na+/K+-ATPase activity was not significantly affected by diet at any sampling time, and there were no consistent effects of diet on the expression of the Na+/K+-ATPase α1a isoform. As dietary CO increased, Na+/K+-ATPase α1b mRNA decreased in fish held in FW, with the 43CO and 54CO diet groups having significantly lower levels than fish fed the 0CO and 11CO diets. Twenty-four-hour SW challenge did not affect the expression of the Na+/K+-ATPase α1a isoform in any diet group, but this isoform was down-regulated in all diet groups following 35 days of SW acclimation. Na+/K+-ATPase α1b expression levels increased in response to 24-h SW transfer and SW acclimation only in fish fed the 54CO diet. The effects of the two extreme diets (0CO and 54CO) were also assessed at various time points during 104 days of rearing in FW. Na+/K+-ATPase α1b mRNA levels were greater in fish fed diet 0CO versus those fed diet 54CO at all times during the FW culture period. These data demonstrate that dietary fatty acid composition can influence the gill Na+/K+-ATPase isoform physiology of juvenile fall-run chinook salmon prior to SW transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号