首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Pieris butterflies use a novel behavioral posture for thermoregulation called reflectance basking, in which the wings are used as solar reflectors to reflect radiation to the body. As a means of exploring the thermoregulatory significance of wing melanization patterns, I examine the relation of basking posture and wing color pattern to body temperature. A mathematical model of the reflectance process predicts certain combinations of dorsal wing melanization pattern and basking posture that maximize body temperature. Laboratory experiments and field observations show that this model correctly predicts qualitative differences in the relation of body temperature to basking posture based on differences in the extent of dorsal melanization on the wing margins, both between species and between sexes within species of Pieris. This is the first demonstration in insects that coloration of the entire wing surface can affect thermoregulation. Model and experimental results suggest that, in certain wing regions, increased melanization can reduce body temperature in Pieris; this effect of melanization is exactly the opposite of that found in other Pierid butterflies that use their wings as solar absorbers. These results are discussed in terms of the evolution of wing melanization pattern and thermoregulatory behavior in butterflies.  相似文献   

2.
Abstract The requirement for efficient thermoregulation has directed the coevolution of specialized morphological and behavioural traits in ectotherms. Adult butterflies exhibit three thermoregulatory mechanisms, termed dorsal, lateral and reflectance basking. In this study, we investigate a potential fourth mechanism whereby individuals perch with their wings fully spread and angled downwards such that the margins are appressed to the substrate. We find that mate‐locating male Hypolimnas bolina (L.) (Nymphalidae) adopt this posture when operational thoracic temperatures are lowest (less than approximately 34 °C). As thoracic temperature increases, males perch with wings increasingly closed and ultimately select shaded microhabitats. Using thermocouple‐implanted dead models, we show that appressed posture individuals warm faster than those adopting the conventional dorsal‐basking (horizontal wing) posture. This thermal advantage is not mitigated by shading of the outer 60–70% of the wing area, which suggests that – as with the conventional dorsal posture – only the basal wing surfaces contribute to heat gain via the absorption of solar irradiation. These investigations suggest that appression represents a novel extension of conventional dorsal basking behaviour in butterflies.  相似文献   

3.
This paper addresses the question of how the relationship between morphological structure and functional performance differs in related groups of organisms. I describe the relationship between a suite of phenotypic characters (behavioral posture and the pattern of wing pigmentation) and one function of these characters (thermoregulatory performance) for two groups of butterflies in the family Pieridae, focusing on how behavior and wing pattern interact to affect specific aspects of thermoregulation. Using both natural and experimentally created variation in wing-melanization patterns, I develop and test a series of predictions about the relations among thermoregulatory posture, melanization pattern, body temperature, and flight activity. Results show that increased melanization in different wing regions has positive, negative, or neutral effects in increasing body temperature of Pieris butterflies. The angle of the wings used during basking alters the relative importance of different modes of heat transfer and thereby determines the contribution of different dorsal wing regions to thermoregulation. Experimentally increased dorsal melanization can either increase or decrease the onset of flight activity and can directly alter thermoregulatory posture. For Pieris, dorsal melanization affects basking and flight, while ventral melanization primarily affects overheating. These results are used to generate a functional map relating melanization pattern to thermoregulatory performance in Pieris. Reflectance-basking posture, white background color, and melanization pattern represent coadapted characters in Pieris that interact to determine thermoregulatory performance. The differences in thermoregulatory posture and background color between pierid butterflies in the subfamilies Pierinae and Coliadinae have led to a reorganization and partial reversal of the thermoregulatory effects of melanization pattern. I suggest that this change in the physical mechanism of thermoregulatory adaption in pierids has qualitatively altered the nature of selection on wing-melanization pattern.  相似文献   

4.
We examined the roles of wing melanisation, weight, and basking posture in thermoregulation in Polyommatus Icarus, a phenotypically variable and protandrous member of the diverse Polyommatinae (Lycaenidae). Under controlled experimental conditions, approximating to marginal environmental conditions for activity in the field (= infrequent flight, long duration basking periods), warming rates are maximised with fully open wings and maximum body temperatures are dependent on weight. Variation in wing melanisation within and between sexes has no effect on warming rates; males and females which differ in melanisation had similar warming rates. Posture also affected cooling rates, consistent with cooling being dependent on convective heat loss. We hypothesise that for this small sized butterfly, melanisation has little or no effect on thermoregulation. This may be a factor contributing to the diversity of wing colours in the Polyommatinae. Because of the importance of size for thermoregulation in this small butterfly, requirements for attaining a suitable size to confer thermal stability in adults may also be a factor influencing larval feeding rates, development time and patterns of voltinism. Our findings indicate that commonly accepted views of the importance of melanisation, posture and size to thermoregulation, developed using medium and large sized butterflies, are not necessarily applicable to small sized butterflies.  相似文献   

5.
Many ectotherms bask in the sun as a behavioural mechanism to increase body temperature and facilitate metabolism, digestion or gamete production, among other functions. Such behaviours are common during the day, but some nocturnal species are also known to thermoregulate at night, in the absence of solar radiation, through shifts in body posture or microhabitat selection. Additionally, recent work has documented nocturnal basking in freshwater turtles in tropical Australia, though the purpose of the behaviour remains unknown. Here, we have built upon that work to test: 1. seasonal differences, 2. the influence of environmental factors and 3. the influence of anthropogenic development (e.g. river-front houses) on nocturnal basking behaviour. We visually surveyed transects repeatedly at night on the Ross River, Townsville, QLD, Australia from March to November 2020 and documented nocturnal basking in both freshwater turtles (Emydura macquarii krefftii) and freshwater crocodiles (Crocodylus johnstoni). For both taxa, we found significantly more nocturnal basking activity during the hotter months. Likewise, water surface temperature significantly influenced nocturnal basking in both taxa, especially when water temperatures were both high and warmer than air temperatures. We propose that nocturnal basking provides a mechanism for thermoregulatory cooling when water temperatures are high (e.g. 30°C) and above-preferred temperatures. After accounting for availability in basking habitat, both turtles and crocodiles basked more frequently on the undeveloped side of the river, suggesting avoidance of human activity or disturbance. This study is the first to document nocturnal basking activity temporally throughout the year as well as the first to identify the influences of environmental factors. Nocturnal thermoregulation has been documented in many reptiles, however, thermoregulatory cooling in tropical systems is less well-known.  相似文献   

6.
Some insect species are thought to grow quickly, even in low temperatures under natural conditions, presumably by conducting basking behaviors to use sunlight. However, whether basking behavior in fact enhances developmental speed and shortens the larval period in the field has not been determined. Moreover, few studies have examined whether basking is behavioral thermoregulation or simply the result of highly‐heterogeneous heat environments in the field. To examine these issues, we conducted field observations and laboratory experiments using larvae of Parnassius citrinarius Motschulsky, which mature within a short period after the thaw in early spring. First, body temperatures of larvae were measured under sunny and cloudy conditions. Second, larval preference for warmer locations was examined. Finally, we compared the developmental speed of larvae when they basked under field conditions and when did not bask in laboratory conditions under different air temperature regimes. Under sunny conditions, larval body temperature was substantially higher than either the temperature of the host plant or the air temperature, and was equivalent to the temperature of dead leaves, which the larvae used as basking sites. In contrast, no such tendency was observed under cloudy conditions. Larvae exhibited an exclusive preference for warmer locations. Moreover, in the field, despite the low ambient temperature, larvae grew much faster than those reared in the laboratory. These results imply that the basking behavior of P. citrinarius larvae is active thermoregulation to maintain high body temperatures in the cold season.  相似文献   

7.

1. 1. Spectral integral reflectance, transmittance and the resulting absorption of intact and descaled butterfly wings of the black-winged Pachliopta aristolochiae (Papilionidae), the white-winged Pieris brassicae (Pieridae), and the yellow-winged Gonepteryx rhamni (Pieridae) were determined between 350 and 800 nm.

2. 2. Whereas in the black forewing of the dorsal basking Pachliopta almost all incident light is absorbed nearly independent of the wavelength and thus converted into heat, the white forewing of the body basking Pieris absorbs less than 20% in the visible range of the spectrum.

3. 3. The yellow hindwing of the lateral basking Gonepteryx absorbs to a higher degree than the Pierid wing, but—due to the sparsely arranged scales—transmittance is clearly increased (40–50% between 525 and 800 nm).

4. 4. The varying thermal characteristics of the different wings with reference to the color and arrangement of the scales and the different basking strategies of the butterflies are discussed.

Author Keywords: Behavioral thermoregulation; coloration; butterfly wing; radiation absorption; heat gain; sun basking  相似文献   


8.
Thermoregulation is critical to the survival of animals. Tropical environments can be particularly thermally challenging as they reach very high, even lethal, temperatures. The thermoregulatory responses of tropical freshwater turtles to these challenges are poorly known. One common thermoregulatory behaviour is diurnal basking, which, for many species, facilitates heat gain. Recently, however, a north-eastern Australian population of Krefft's river turtles (Emydura macquarii krefftii) has been observed basking nocturnally, possibly to allow cooling. To test this, we determined the thermal preference (central 50% of temperatures selected) of E. m. krefftii in an aquatic thermal gradient in the laboratory. We then conducted a manipulative experiment to test the effects of water temperatures, both lower and higher than preferred temperature, on diurnal and nocturnal basking. The preferred temperature range fell between 25.3°C (±SD: 1.5) and 27.6°C (±1.4) during the day, and 25.3°C (±2.4) and 26.8°C (±2.5) at night. Based on this, we exposed turtles to three 24 h water temperature treatments (‘cool’ [23°C], ‘preferred’ [26°C] and ‘warm’ [29°C]) while air temperature remained constant at 26°C. Turtles basked more frequently and for longer periods during both the day and night when water temperatures were above their preferred range (the ‘warm’ treatment). This population frequently encounters aquatic temperatures above the preferred thermal range, and our results support the hypothesis that nocturnal basking is a mechanism for escaping unfavourably warm water. Targeted field studies would be a valuable next step in understanding the seasonal scope of this behaviour in a natural environment.  相似文献   

9.
Measurements of body temperature in the field demonstrated that endothermic cicadas regulate body temperature by behavioral mechanisms as well as by endogenous heat production. Regression analysis suggests both endothermic and ectothermic species are thermoregulating. Body temperature of endothermically active cicadas without access to exogenous heat is approximately the same as the body temperature of basking cicadas. Tibicen winnemanna (Davis) raises body temperature in the field with the heat produced in flight or through the activation of the flight musculature without the act of flight. T. chloromerus (Walker) uses solar radiation to elevate body temperature to the level necessary for activity. The thermal responses of each species are related to its activity patterns with minimum flight temperature and shade-seeking temperatures significantly lower in the endothermic T. winnemanna. Heat torpor temperature appears to be related to the environment rather than behavior pattern. Endothermy in cicadas may serve to uncouple reproductive behavior from environmental constraints; to circumvent possible thermoregulatory problems; to permit the utilization of habitats unavailable to strictly ectothermic cicadas; to reduce predation; to optimize broadcast coverage and sound transmission; and to decrease possible acoustic interference. Accepted: 25 March 2000  相似文献   

10.
The wing membranes of bats present a large surface area upon which radiation might be taken up, increasing heat load to the animals. This, combined with the high amount of heat produced during flight, has been advanced as one hypothesis explaining the fact that bats are almost exclusively nocturnal. The proportion of short-wave (visible) radiation absorbed by bat wing membrane has previously been measured at between 0.7 and 0.92. These measurements were made on pieces of membrane taken from the wings of dead, mainly insectivorous bats from temperate regions. Here we examined the amount of light transmitted through and reflected off the wing membranes of four species of live pteropodid bats. There were significant differences in wing reflection between species. At 0.68, the average proportion of light absorbed into the wing membranes was lower than previously reported. This might be because we worked with live animals or because ours were tropical bats which are routinely exposed to tropical sun when roosting. Variation in wing tension strongly affected light absorption. It was predicted that the relaxed state of wing membrane through part of the wing beat cycle would increase the absorption of light into the wings of day-flying bats. The proportion of light absorbed into wings was shown to be an important factor in the heat balance of hypothetical bats flying during the day. Our results raise the predicted temperature at which bats flying during the day might experience hyperthermia by approximately 2 °C and suggest that variation in albedo of wings between species may make some species more susceptible to overheating than others. Accepted: 6 December 1998  相似文献   

11.
Mammalian torpor saves enormous amounts of energy, but a widely assumed cost of torpor is immobility and therefore vulnerability to predators. Contrary to this assumption, some small marsupial mammals in the wild move while torpid at low body temperatures to basking sites, thereby minimizing energy expenditure during arousal. Hence, we quantified how mammalian locomotor performance is affected by body temperature. The three small marsupial species tested, known to use torpor and basking in the wild, could move while torpid at body temperatures as low as 14.8-17.9°C. Speed was a sigmoid function of body temperature, but body temperature effects on running speed were greater than those in an ectothermic lizard used for comparison. We provide the first quantitative data of movement at low body temperature in mammals, which have survival implications for wild heterothermic mammals, as directional movement at low body temperature permits both basking and predator avoidance.  相似文献   

12.
Ectotherm species are not capable of generating metabolic heat; therefore, they present different strategies for regulating their body temperatures, ranging from a precise degree of thermoregulation to a passive thermoconformity with ambient temperatures. In reptiles, aerial basking is the most common mechanism for gaining heat. However, among aquatic reptiles, such as freshwater turtles, aquatic basking is also frequent. Hydromedusa tectifera is a turtle of exclusively aquatic and nocturnal habits widely distributed in South America. We studied the relationship between body temperature (Tb) of H. tectifera and its habitat, and explored the effects of sex, life stage and body size and mass on Tb. Fieldwork was conducted in two streams of a mountain area of central Argentina. We recorded cloacal temperature, size and mass of 84 turtles. We also determined individuals’ sex and life stage (adult/juvenile). Regarding ambient temperatures, we measured water temperature on the surface (Tsurf) and at depth of turtle capture (Tdepth) and air temperature. Mean Tb was 18.58 °C (Min = 10.20 °C; Max = 25.70 °C). Tsurf and Tdepth were highly correlated. Multi-model analysis using Akaike criterion indicated that Tb was strongly associated with water temperature, whereas air temperature and body size and mass did not show a significant effect. There was also no effect of turtle sex or life stage on Tb. Our results indicate that H. tectifera is a thermoconformer and eurythermal species. A nocturnal pattern of activity and a fully aquatic lifestyle are suggested as determinant factors.  相似文献   

13.
African mole-rats (family: Bathyergidae) are strictly subterranean mammals that reside in extensive networks of underground tunnels. They are rarely, if ever, exposed to light and experience muted temperature ranges. Despite these constant conditions, the presence of a functional circadian clock capable of entraining to external light cues has been reported for a number of species. In this study, we examine a social mole-rat species, Cryptomys hottentotus mahali, to determine if it possesses a functional circadian clock that is capable of perceiving light and ambient temperature cycles, and can integrate these cues into circadian rhythms of locomotor activity and core body temperature. Eight male and eight female, non-reproductive individuals were subjected to six cycles of varying light and temperature regimes. The majority of the individuals displayed daily rhythms of locomotor activity and body temperature that are synchronised to the external light and temperature cycles. Furthermore, endogenous rhythms of both locomotor activity and core body temperature were displayed under constant conditions. Thus, we can conclude that C. h. mahali possesses a functional circadian clock that can integrate external light and temperature cues into circadian rhythms of locomotor activity and core-body temperature.  相似文献   

14.
There is pressing urgency to understand how tropical ectotherms can behaviorally and physiologically respond to climate warming. We examine how basking behavior and thermal environment interact to influence evolutionary variation in thermal physiology of multiple species of lygosomine rainforest skinks from the Wet Tropics of northeastern Queensland, Australia (AWT). These tropical lizards are behaviorally specialized to exploit canopy or sun, and are distributed across marked thermal clines in the AWT. Using phylogenetic analyses, we demonstrate that physiological parameters are either associated with changes in local thermal habitat or to basking behavior, but not both. Cold tolerance, the optimal sprint speed, and performance breadth are primarily influenced by local thermal environment. Specifically, montane lizards are more cool tolerant, have broader performance breadths, and higher optimum sprinting temperatures than their lowland counterparts. Heat tolerance, in contrast, is strongly affected by basking behavior: there are two evolutionary optima, with basking species having considerably higher heat tolerance than shade skinks, with no effect of elevation. These distinct responses among traits indicate the multiple selective pressures and constraints that shape the evolution of thermal performance. We discuss how behavior and physiology interact to shape organisms’ vulnerability and potential resilience to climate change.  相似文献   

15.
Summary I document a new mechanism for behavioral thermoregulation, not previously described in animals, called reflectance basking. This behavior, described here for Pieris butterflies, involves the use of the wings as solar reflectors that reflect solar radiation onto the body to increase body temperature. Results show that Pieris require thoracic (body) temperature. between 29° and 40° C in order to take off and fly, and achieve these elevated temperatures by basking. Diurnal patterns of population flight activity are closely correlated with patterns of body temperature during basking. Behavioral studies indicate that 1) Pieris orient to solar radiation, 2) they use thermoregulatory postures consistent with reflectance basking, and 3) they do not use the basking postures found in other Pierid butterflies (i.e., the Coliadinae). There are consistent differences in wing angles used in reflectance basking between Pieris in different subgenera. Results are discussed with respect to thermoregulation and wing color in other Pierid butterflies, and suggest that a re-evaluation of the functional significance of melanization in Pieris is needed.  相似文献   

16.
We investigated the morphology of the skin and the biochemistry of the lipids in the skin secretion of Bokermannohyla alvarengai, a montane treefrog that is known to bask regularly, motionless in full sunlight for extended periods of time. Our primary goal was to identify structural and biochemical modifications that might assist this frog species to accommodate the conflicting demands for heat exchange and water balance while basking. The modulation of heat exchange in basking B. alvarengai involves changes in skin coloration. We found that this response was supported by a prominent monolayer of large iridophores, whose light reflectance property is adjusted by the response of intervening melanophores. Mucosubstances and lipid compounds, mainly consisted of saturated fatty acids and presumably secreted from granular glands, were detected on the skin of B. alvarengai. These compounds formed an extra‐epidermal layer over the animal's dorsal surface that might assist in the prevention of excessive water loss through evaporation. Additionally, we found well‐developed skin folds at the ventral region of the frogs that lead to an increment of surface area. This feature combined with the extensive hypervascularization, also noticed for the skin of B. alvarengai, may play an important role in water reabsorption. The suite of structural and biochemical modifications identified for the integument of B. alvarengai seems to conjugate aspects relevant to both, heat exchange and water balance, allowing for this species to explore basking as an efficient thermoregulatory strategy. J. Morphol. 276:1172–1182, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
Differences in warming and cooling rates in basking lizards have long been thought to be brought about by adjustments in heart rate and blood flow. We examined the physiological control of warming and cooling in Iguana iguana, Sceloporus undulatus, and three species of Cordylus by measuring time constants, heart rate, and superficial capillary blood flow. Previously, techniques have not been available to measure time constants in shuttling animals. Using a combination of rapid measurements of temperature and blood flow and numerically intensive parameter-fitting methods, we measured dominant and subdominant time constants in lizards subjected to periods of both simulated basking and simulated shuttling. Cutaneous blood flow and heart rate were measured using laser Doppler flowmeters. Of the three, only the larger I. iguana measurably altered rates of warming and cooling during basking. During shuttling, none of the species effectively controlled warming and cooling. During both basking and shuttling, blood flow and heart rate tended to change in predicted directions. Superficial blood flow correlated with surface temperature while heart rate correlated more closely with core temperature. Changes in superficial blood flow and heart rate varied relatively independently in I. iguana. The techniques used here provide a better understanding of the ability of these species to control thermoregulation.  相似文献   

18.
Summary As a comparison to the many studies of larger flying insects, we carried out an initial study of heat balance and thermal dependence of flight of a small butterfly (Colias) in a wind tunnel and in the wild.Unlike many larger, or facultatively endothermic insects, Colias do not regulate heat loss by altering hemolymph circulation between thorax and abdomen as a function of body temperature. During flight, thermal excess of the abdomen above ambient temperature is weakly but consistently coupled to that of the thorax. Total heat loss is best expressed as the sum of heat loss from the head and thorex combined plus heat loss from the abdomen because the whole body is not isothermal. Convective cooling is a simple linear function of the square root of air speed from 0.2 to 2.0 m/s in the wind tunnel. Solar heat flux is the main source of heat gain in flight, just as it is the exclusive source for warmup at rest. The balance of heat gain from sunlight versus heat loss from convection and radiation does not appear to change by more than a few percent between the wings-closed basking posture and the variable opening of wings in flight, although several aspects require further study. Heat generation by action of the flight muscles is small (on the order of 100 m W/g tissue) compared to values reported for other strongly flying insects. Colias appears to have only very limited capacity to modulate flight performance. Wing beat frequency varies from 12–19 Hz depending on body mass, air speed, and thoracic temperature. At suboptimal flight temperatures, wing beat frequency increases significantly with thoracic temperature and body mass but is independent of air speed. Within the reported thermal optimum of 35–39°C, wing beat frequency is negatively dependent on air speed at values above 1.5 m/s, but independent of mass and body temperature. Flight preference of butterflies in the wind tunnel is for air speeds of 0.5–1.5 m/s, and no flight occurs at or above 2.5 m/s. Voluntary flight initiation in the wild occurs only at air speeds 1.4 m/s.In the field, Colias fly just above the vegetation at body temperatures of 1–2°C greater than when basking at the top of the vegetation. These measurements are consistent with our findings on low heat gain from muscular activity during flight. Basking temperatures of butterflies sheltered from the wind within the vegetation were 1–2°C greater than flight temperatures at vegetation height.  相似文献   

19.
Free and unnarcotized butterflies in a vertical basking position were exposed to radiation from a halogen lamp. Warming rate and equilibrium excess temperatures were recorded by means of microthermistors on the cuticle. Living, dead, and dried specimens were irradiated partly and totally. If the wings are shaded, the excess body temperature is reduced by about 30 per cent. The major portion of the heat transferred from the wing to the body originates from 15 per cent of the wing surface nearest to the body. There is no significant difference in excess thoracic temperatures of living and freshly dead specimens. After drying, the body temperature level rises about 1·4 to 2·2°C, remaining almost constant between 15°C (not radiated) and 37°C (radiated). The influence of air convection was tested with dried specimens under varying spatial orientation, keeping incident radiation constant. In an approximately horizontal position the heat arising from the wing increases to about 40 per cent by accumulation of warm air under the wing base. The ecological implications of heat supply by the wings and adaptive significance of wing pattern are discussed with respect to different modes of heat transport  相似文献   

20.
H. Dreisig 《Oecologia》1995,101(2):169-176
Some male butterflies defend specific mating sites, e.g. sandy patches (Hipparchia semele) or plants (Ochlodes venata). When perching within its territory, a male orients the body axis and tilts its wings and body in order to control the body area exposed to the sun, and thereby keeps its body temperature (T b) as close to a preferred level as possible. In accordance with a model presented here, these behaviours can be separated into three successive phases. At low temperatures, the males maximized the heat load by exposing the maximum body area (sun-basking). This raised T b above the temperature of a non-regulating animal by c. 3° C. At an intermediate range of temperatures, T b was kept constant at the preferred level by means of a gradual change of body orientation and posture (graded phase). At high temperatures, the heat load was minimized by exposing the minimum body area. This lowered T b below that of a non-regulating animal by c. 2.5° C. H. semele went through all three phases, but O. venata only reached the basking phase due to a more moderate microclimate. Three types of thermoregulation in ectothermic animals and their functions are discussed. Thermoregulation in territorial male butterflies serves to prepare the animal for efficient flight performance if another male should try to take over the territory, or a predator attacks. The males also made frequent short flights, spontaneously or elicited by other insects. Their duration was independent of temperature, and they may function as a sexual signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号