首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phytochemical investigations on the roots of Fallopia multiflora var. Ciliinerve led to the isolation of eighteen compounds, including six chromones [2-methyl-5- carboxymethyl-7-hydroxychromone (1), 2-methyl-5-methylcarboxymethyl-7- hydroxychromone (2), 2,5-dimethyl-7-hydroxychromone (3), 2-methyl-5-hydroxymeth-yl-7-hydroxychromone (4), 2-methyl-5-carboxylicacid-7-hydroxy-chromone (5), and 2,5-dimethyl-7-hydroxychromone-7-O-β-D-glucopyranoside (6)], three lignans [Isolariciresinol (8), 5-[4-(3,4-dimethoxyphenyl)-2,3-dimethylbutyl]-1,3-benzodioxole (9), and isolariciresinol-9-O-β-D-xylopyranoside (10)], four anthraquinones [physcion-8-O-β-D-glucopyranoside (11), emodin-8-O-β-D-glucopyranoside (12), Rhein (13), and Chrysophanol (14)], three isobenzofurans [5,7-dihydroxy-isobenzofuran (15), 5-methoxy-7-hydroxy-isobenzofuran (16), and 5-methoxy-isobenzofuran-7-O-β-D-glucoside (17)], one phenolic acid [2,5-diacethylhy-droquinone (7)], and one pyran [Zanthopyranone (18)]. Among them, compounds 1, 3, 6, 13 and 14 were reported from F. multiflora var. Ciliinerve for the first time, compounds 2, 8, 10 and 15–17 were isolated from the genus Fallopia for the first time, and compounds 4, 9 and 18 were isolated for the first time from Polygonaceae family. Furthermore, the isolation of compounds 5 and 7 were reported for the first time in plants. Their structures were identified by spectroscopic methods and compared with those previously published. The chemotaxonomic significance of these isolated compounds has also been discussed.  相似文献   

2.
The preparation of a series of 1,2-phenylenedioxoborylcyclopentadienyl-metal complexes is described. These are of formula [M{η5-C5H4(BX)}Cl3] [M = Ti and X = CAT (2a), CATt (2b) or CATtt (2c); X = CATtt and M = Zr (4a) or Hf (4b)], [M{η5-C5H4(BX)}2Cl2] [M = Zr, X = CAT (3a) or CATt (3c); or M = Hf, X = CAT (3b) or CATt (3d)], [M{(μ-η5-C5H3BCAT)2 SiMe2}Cl2] [M = Zr (5a) or Hf (5b)], [M{η5-C5H3(BCAT)2}Cl3] [M = Zr (6a) or Hf (6b)], [M{η5-C5H4BCAT}3(THF)] [M = La (7a), Ce (7b) or Yb (7c)], [Sn{η5-C5 H4(BCATt)}Cl](8) and [Fe{η5-C5H4(BCATt)}2] (9). The abbreviations refer to BO2C6H4-1,2 (BCAT) and the 4-But (BCATt) and the (BCATtt) analogues. The compounds 2a-9 have been characterised by microanalysis, multinuclear NMR and mass spectra. The single crystal X-ray structure of the lanthanum compound 7a is presented.  相似文献   

3.
We have synthesized and compared the cytokinin activities in the tobacco bioassay of a series of benzologs of 6-(3-methyl-2-butenylamino)purine (N6-(Δ2-isopentenyl)adenine) (1a) and 6-benzylaminopurine (N6-benzyl-adenine) (1c). The linear benzo analogs 8-(3-methyl-2-butenylamino)imidazo[4,5-g]quinazoline (2b) and 8-benzyla-minoimidazo[4,5-g]quinazoline (2c) are active, while 9-(3-methyl-2-butenylamino)imidazo[4,5-f]quinazoline (3b) and 6-(3-methyl-2-butenylamino)imidazo[4,5-h]quinazoline (4b) are slightly active and 9-benzylaminoimidazo[4,5-f]-quinazoline (3c) and 6-benzylaminoimidazo[4,5-h]quinazoline (4c) are inactive. Compounds 2b and 2c represent the first examples of active cytokinins containing a tri-heterocyclic moiety. The above series of compounds demonstrates structural factors that affect cytokinin activity. These compounds also have interesting fluorescence properties which could render them useful as probes to study the mechanism of cytokinin action.  相似文献   

4.
Phytochemical investigation of the stems and leaves of Lonicera hypoglauca Miq. led to the isolation of one novel methoxylated flavone, acunminatin (7,2′,4′-trihydroxyl-5,5′- methoxyflavone) (1), and fourteen known compounds (215), including six flavonoids (mearnsetin 2, kaempferol 3, acacetin 4, 5,7,3′,4′-tetramethoxyflavone 5, tricin 6, and 5,7,3′,4′,5′-pentamethoxyflavone 7), two coumarins (umbelliferone 8 and scopoletin 9), two phenylpropanoids (trans-ferulic acid 10 and chlorogenic acid 11), two iridoid glycosides (loganin 12 and sweroside 13), and two triterpenoids (uvaol 14 and ursolic acid 15). The structures of the compounds were identified by spectroscopic analysis and by comparing their spectral data with those reported in the literature. Five of these compounds (1, 2, 4, 5, and 7) were isolated from the L. genus for the first time, and compounds 68 and 1415 were isolated for the first time from L. hypoglauca. The chemotaxonomic significance of the isolated compounds in the L. genus and the Caprifoliaceae family are discussed herein.  相似文献   

5.
Boerhaavia diffusa L. is used in the traditional medicine of several Asian countries. The isolation and identification of five new compounds, together with 11 known compounds, from the ethyl acetate extract of the aerial part of B. diffusa grown Vietnam is reported. The structure of the new compounds was established by 1D and 2D NMR spectroscopy, and high resolution ESI-MS analysis. New compounds are two rotenoids: 9,11-dihydroxy-6,10-dimethoxy[1]benzopyrano[3,4-b][1]benzopyran-12(6H)-one (boeravinone P, 3) and 3-[2-(β-d-glucopyranosyloxy)-3-hydroxyphenyl]-5-hydroxy-2-hydroxymethyl-7-methoxy-6-methyl-4H-1-benzopyran-4-one (boeravinone Q, 9), an atropisomeric mixture of two rotenoid glycosides (3′,5-dihydroxy-2-hydroxymethyl-7-methoxy-6-methylisoflavone 2′-O-β-d-glucopyranoside, 11), a sesquiterpene lactone (4,10-dihydroxy-8-methoxyguai-7(11)-en-8,12-olide, 5) and a new phenylpropanoid glycoside (boerhaavic acid, 15).  相似文献   

6.
A series of novel 6-desfluoro [des-F(6)] and 6-fluoro-1-[(1R,2S)-2-fluorocyclopropan-1-yl]-8-methoxyquinolones bearing 3-(1-aminocycloalkyl)pyrrolidin-1-yl substituents at the C-7 position (1–6) was synthesized to obtain potent drugs for nosocomial infections caused by Gram-positive pathogens. The des-F(6) compounds 4–6 exhibited at least four times more potent activity against representative Gram-positive bacteria than ciprofloxacin or moxifloxacin. Among the derivatives, 7-[(3R)-3-(1-aminocyclopropan-1-yl)pyrrolidin-1-yl] derivative 4, which showed favorable profiles in preliminary toxicological and non-clinical pharmacokinetic studies, exhibited potent antibacterial activity against clinically isolated Gram-positive pathogens that had become resistant to one or more antibiotics.  相似文献   

7.
(7S,8R,7′S)-9,7′,9′-Trihydroxy-3,4-methylenedioxy-3′-methoxy [7-O-4′,8-5′] neolignan (1) and (7S,8R,7′S)-9,9′-dihydroxy-3,4-methylenedioxy-3′,7′-dimethoxy [7-O-4′,8-5′] neolignan (2), two new natural dihydrobenzofuran-type neolignans, along with 9,9′-dihydroxy-3,4-methylenedioxy-3′-methoxy [7-O-4′,8-5′] neolignan (3) and (-)-machicendiol (4), were isolated from the whole plants of Breynia fruticosa. The structures of 1 and 2, including the absolute configurations, were determined by spectroscopic methods and circular dichroism (CD) techniques. The absolute configuration of 4 was confirmed by calculations of the OR spectrum, together with OR and ECD spectra of its p-bromobenzoate ester (4a).  相似文献   

8.
The structures of two new compounds from the root bark of Turraeanthus mannii (Meliaceae) were determined as (3R,4R,3′R,4′R)-6,6′-dimethoxy-3,4,3′,4′-tetrahydro-2H,2′H-[3,3′]bichromenyl-4,4′-diol (1) and 15-acetoxy-labda-8(17),12E,14Z-trien-16-al (2) by means of spectroscopic analysis. Five further known compounds including one coumarin derivative, one chromenone, two labdane diterpenes and one pregnane steroid have been isolated from the same source. In antifungal and cytotoxic assays, 15-acetoxy-labda-8(17),12E,14Z-trien-16-al (2) was highly active against Mucor miehei and Artemia salina, respectively.  相似文献   

9.
We previously demonstrated that the α-benzylphenylpropanoic acid-type PPARγ-selective agonist 6 exhibited a reversed stereochemistry–activity relationship, that is, the (R)-enantiomer is a more potent PPARγ agonist than the (S)-enantiomer, compared with structurally similar α-ethylphenylpropanoic acid-type PPAR agonists. Here, we designed, synthesized and evaluated the optically active α-cyclohexylmethylphenylpropanoic acid derivatives 7 and α-phenethylphenylpropanoic acid derivatives 8, respectively. Interestingly, α-cyclohexylmethyl derivatives showed reversal of the stereochemistry–activity relationship [i.e., (R) more potent than (S)], like α-benzyl derivatives, whereas α-phenethyl derivatives showed the ‘normal’ relationship [(S) more potent than (R)]. These results suggested that the presence of a branched carbon atom at the β-position with respect to the carboxyl group is a critical determinant of the reversed stereochemistry–activity relationship.  相似文献   

10.
The enantioselective microbial reduction of 6-oxo-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-8-azaspiro[4.5]decane-7,9-dione (1) to either of the corresponding (S)- and (R)-6-hydroxy-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-8-azaspiro[4.5]decane-7,9-diones (2 and 3, respectively) is described. The NADP+-dependent (R)-reductase (RHBR) which catalyzes the reduction of 6-ketobuspirone (1) to (R)-6-hydroxybuspirone (3) was purified to homogeneity from cell extracts of Hansenula polymorpha SC 13845. The subunit molecular weight of the enzyme is 35,000 kDa based on sodium dodecyl sulfate gel electrophoresis and the molecular weight of the enzyme is 37,000 kDa as estimated by gel filtration chromatography. (R)-reductase from H. polymorpha was cloned and expressed in Escherichia coli. To regenerate the cofactor NADPH required for reduction we have cloned and expressed the glucose-6-phosphate dehydrogenase gene from Saccharomyces cerevisiae in E. coli. The NAD+-dependent (S)-reductase (SHBR) which catalyzes the reduction of 6-ketobuspirone (1) to (S)-6-hydroxybuspirone (2) was purified to homogeneity from cell extracts of Pseudomonas putida SC 16269. The subunit molecular weight of the enzyme is 25,000 kDa based on sodium dodecyl sulfate gel electrophoresis. The (S)-reductase from P. putida was cloned and expressed in E. coli. To regenerate the cofactor NADH required for reduction we have cloned and expressed the formate dehydrogenase gene from Pichia pastoris in E. coli. Recombinant E. coli expressing (S)-reductase and (R)-reductase catalyzed the reduction of 1 to (S)-6-hyroxybuspirone (2) and (R)-6-hyroxybuspirone (3), respectively, in >98% yield and >99.9% e.e.  相似文献   

11.
A series of novel furo[2,3-b]pyridine-2-carboxamide 4ah/pyrido[3′,2′:4,5]furo[3,2-d] pyrimidin-4(3H)-one derivatives 5ap were prepared from pyridin 2(1H) one 1 via selective O-alkylation with α-bromoethylester followed by cyclization, then reaction with different aliphatic primary amines to obtain 4 and further reaction with triethyl orthoacetate/triethyl orthoformate. Also prepared novel furo[2,3-b]pyridine-2-carbohydrazide Schiff’s bases 7ah and pyrido [3′,2′:4,5]furo[3,2-d]pyrimidin-4(3H)-one derivatives 8ah starting from furo[2,3-b]pyridine carboxylate derivatives 3 by reaction with hydrazine hydrate to form 6 and reaction with diverse substituted aldehydes and cyclization. Products 4ah, 5ap, 7ah and 8ah were screened against four human cancer cell lines (HeLa, COLO205, Hep G2 and MCF 7) and one normal cell line (HEK 293). Compounds 4e, 4f, 4g, 5h, 7c, 7d, 7e and 7f showed significant anticancer activity against all the cell lines at micro molar concentration and found to be non-toxic to normal cell line. Studies for HeLa, COLO205 and MCF-7 using CoMFA and CoMSIA. Models from 3D-QSAR provided a strong basis for future rational design of more active and selective HeLa, COLO205 and MCF-7 cell line inhibitors.  相似文献   

12.
The trunk wood of the Amazonian Aniba ferra Kubitzki contains, besides three benzyl benzoates (1a, b, c) and dillapiol (2), four hydrobenzofuranoid and two bicyclo [3.2.1] octanoid neolignans. The former comprise two representatives (3a, b) of the novel ferrearin- (3a-allyl-2- aryl-7a-hydroxy-3-methyl-3a,4,7,7a-tetrahydro-7-oxobenzofuran type, and two further representatives (4a, b) of the known porosin-(3a-allyl-2-aryl-5-methoxy-3a,4,5,6-tetrahydro-6-oxobenzofuran) type. The latter comprises a new representative (5a) of the known canellin- (1-allyl-6-aryl-7-methylbicyclo [3.2.1] octane) type, and the methyl ether (6a) of a known guianin- (1-allyl-6-aryl-7-methyl-4-oxobicyclo [3.2.1] oct-2-en) type neolignan.  相似文献   

13.
Clusia criuva belongs to the Clusiaceae family and it is endemic to the rupestrian fields in Chapada Diamantina National Park (Brazil). Phytochemical investigation of C. criuva trunks led to the isolation of five triterpenoids [winchic acid (1), betulinic acid (2), lupeol (3), friedelin (4), and friedelinol (5)], four steroids [lanosterol (6), stigmasterol (7), β-sitosterol (8), and sitostenone (9)], seven polyprenylated benzophenone derivatives [propolone A (10), propolone B (11), propolone C (12), propolone D (13), sampsonione B (14), hyperisampsin E (15), and hyperisampsin F (16)], four xanthones [neriifolone C (17), 6-deoxyisojacareubin (18), osajaxanthone F (19), and brasilixanthone B (20)], two biphenyls [aucuparina (21) and 2,2-dimethyl-5-hydroxy-7-phenylchromene (22)], and two tocotrienol derivatives [2Z- and 2E-δ-tocotrienoloic acids (23 and 24)]. Compounds 1, 11, 12, 15, and 16 were isolated for the first time in the Clusiaceae family, compounds 17, 19 and 21 were isolated for the first time in the genus Clusia, whereas 210, 13, 14, 18, 20, 2224 were isolated for the first time in Clusia criuva. Compounds 1, 2, 11, 12, 13 and 15 showed potent in vitro cytotoxic activity against GL-15 glioblastoma-derived human cell line. Chemophenetics significance of these compounds is described herein.  相似文献   

14.
A comprehensive phytochemical investigation of the stems and leaves of Schisandra chinensis (Turcz.) Baill. resulted in isolation of seventeen compounds, including five lignans: meso-dihydroguaiaretic acid (1), licarin-A (2), pregomisin (3), gomisin A (4), acutissimanide (5), three phenylpropanoids: 2-[4-(3-hydroxypropyl)-2-methoxyphenoxy]-propane-1,3-diol (6), 2-methoxy-4-(2-propenyl) phenyl β-D-glucopyranoside (7), erigeside 2 (8), six sesquiterpenoids: 7′-hydroxy-abscisic acid (9), burmannic acid (10), (3S,5R,6R,7E)-3,5,6-trihydroxy-7-megastigmen-9-one (11), 3-Cyclohexene-1,2-diol, 4-(3-hydroxybutyl)- 3, 5, 5-trimethyl- (12), (−)-loliolide (13), (3Z,5R,8R,11R)-Caryophyll-3-ene-5,8,15-triol (14), one monoterpenoid: (6R,3Z)-6,7-dihydroxy-3,7-dimethyl-2-octenoic acid (15) and two other compounds: methyl shikimate (16), 4-Hydroxydodec-2-enedioic acid (17). Their chemical structures were confirmed through NMR, HRESIMS and comparison with the data in the literature. This is the first report of compounds 5, 6, 815, 17 from the family Schisandraceae and compounds 2, 16 from the genus Schisandra. Furthermore, we performed a chemotaxonomic study of the separated compounds.  相似文献   

15.
No-carrier-added (NCA) R(+)-7-chloro-8-hydroxy-3-(3′-[18F]fluoropropyl)-1-phenyl-2,3,4,5-tetrahydro-3-benzazepine (2b) (an analog of dopamine D-1 receptor ligand SCH 23390), ethyl 8-fluoro-5,6-dihydro-5-(3′-fluoropropyl)-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylate (4b) and 3′-[18F]fluoropropyl 8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylate (6b) (analogs of the benzodiazepine RO 15-1788) were synthesized by alkylation of the corresponding nor-compound with NCA 1-[18F]fluoro-3-iodopropane in 10–15% yield (EOB) in ~110min and with a mass of 2–3nmol. Compound 2 is less potent (~ 12–14 times) than SCH 23390 in binding to rat striatal membranes in vitro. Compounds 2b, 4b and 6b exhibit no specific anatomical distribution to mouse brain. These results suggest that the substituent at position 3 of SCH 23390, and position 5 and carboxylate group of RO 15-1788 are critical determinants both of affinity and selectivity for receptor binding, and underscores the evaluation necessary when even minor changes (C1 to C3) are made in bioactive compounds.  相似文献   

16.
Biocatalysis of capsaicin (1) was performed by Penicillium janthinellum AS 3.510. Nine metabolites including four new compounds were afforded, and their structures were elucidated as (8S)-trans-8-hydroxy-8-hydroxymethyl-N-vanillyl-6-nonenamide (2), 6-hydroxy-8-methyl-N-vanillyl-7-nonenamide (3), trans-8-methoxy-8-methyl-N-vanillyl-6-nonenamide (4), 6-methoxy-8-methyl-N-vanillyl-7-nonenamide (5), dihydrocapsaicin (6), ω-1-hydroxydihydrocapsaicin (7), ω-1-hydroxycapsaicin (8), ω-hydroxycapsaicin (9), N-(4-hydroxy-3-methoxybenzyl)-5-[3-(propan-2-yl)oxiran-2-yl]pentanamide (10) by 1D and 2D NMR and HRESIMS spectra. The biotransformation processes include hydroxylation, methylation, reduction, and epoxylation.  相似文献   

17.
Further investigation of the marine mangrove-derived fungal strain Penicillium sp. MA-37 led to the isolation of one new benzophenone, iso-monodictyphenone (1), two new diphenyl ether derivatives penikellides A (2) and B (3), and two known analogs monodictyphenone (4) and 6-[2-hydroxy-6-(hydroxymethyl)-4-methylphenoxy]-2-methoxy-3-(1-methoxy-3-methylbutyl)benzoic acid (5). The structures of these compounds were elucidated by spectroscopic analyses including 1D- and 2D-NMR and mass spectrometry. The brine shrimp lethality and antibacterial activity against five aquaculture pathogens were evaluated.  相似文献   

18.
Reactions of 2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L1), 2-(3,5-diphenylpyrazol-1-ylmethyl)pyridine (L2), 2-(3,5-di-tert-butylpyrazol-1-ylmethyl)pyridine (L3) and 2-(3-p-tolylpyrazol-1-ylmethyl)pyridine (L4) with K2[PtCl4] in a mixture of ethanol and water formed the dichloro platinum complexes [PtCl2(L1)] (1), [PtCl2(L2)] (2), [PtCl2(L3)] (3) and [PtCl2(L4)] (4). Complex 1, [PtCl2(L1)], could also be prepared in a mixture of acetone and water. Performing the reactions of L2 and L3 in a mixture of acetone and water, however, led to C-H activation of acetone under mild conditions to form the neutral acetonyl complexes [Pt(CH2COCH3)Cl(L2)] (2a) and [Pt(CH2COCH3)Cl(L3)] (3a). The same ligands reacted with HAuCl4 · 4H2O in a mixture of ethanol and water to form the gold salts [AuCl2(L1)][AuCl4] (5) [AuCl2(L2)][Cl] (6) [AuCl2(L3)][Cl] (7) and [AuCl2(L4)][AuCl4] (8); however, with the pyrazolyl unit in the para position of the pyridinyl ring in 4-(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L5), 4-(3,5-diphenylpyrazol-1-ylmethyl)pyridine (L6) neutral gold complexes [AuCl3(L5)] (9) and [AuCl2(L6)] (10) were formed; signifying the role the position of the pyrazolyl group plays in product formation in the gold reactions. X-ray crystallographic structural determination of L6, 2, 33a, 8 and 10 were very important in confirming the structures of these compounds; particularly for 3a and 8 where the presence of the acetonyl group confirmed C-H activation and for 8 where the counter ion is . Cytotoxicity studies of L2, L4 and complexes 1-10 against HeLa cells showed the Au complexes were much less active than the Pt complexes.  相似文献   

19.
Extraction of Millettia pachycarpa Benth. gave 5,7,4′-trihydroxy-6,8-diprenylisoflavone (1a), 5,7,4′-trihydroxy-6,3′-diprenylisoflavone (2a), 5,7,3′,4′-tetrahydroxy-6,8-diprenylisoflavone (3a) and (2R, 3R)-5,4′-dihydroxy-8-prenyl-6″,6″-dimethylpyrano[2″,3″: 7,6]-dihydroflavonol (4a) whose structures were established by chemical transformations and spectroscopic means. Pectolinarigenin and salvigenin were isolated from Buddleia macrostachya Benth.  相似文献   

20.
Phytochemical investigation of Stenotaenia macrocarpa Freyn & Sint. (Apiaceae) led to the isolation of ten known compounds: eight flavonoids (18) and two furanocoumarins (910). The chemical structures of the compounds were elucidated based on 1D and 2D NMR and MS spectra, as well as comparison with the relevant literature data. To the best of our knowledge, this is the first detailed phytochemical study about Stenotaenia macrocarpa and the first report on the isolation of all the compounds from the genus Stenotaenia, and manghaslin (2) and its methoxylated derivative typhaneoside (3) from Apiaceae. The chemotaxonomic significance of isolates was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号