首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Yellow-legged Gull Larus cachinnans is monogamous with bi-parental incubation. In this study, the effects of high levels of plasma testosterone in male Yellow-legged Gulls during the incubation period were analysed. Free-living male gulls were implanted with testosterone (T-males), and their sexual behaviour within the pair was observed and compared with that of control pairs. Egg temperatures, length of incubation and hatching success were also analysed. T-males and their mates displayed more sexual behaviour than the controls. T-males engaged in mounting behaviour with their mates, whereas control males did not. Proportionally less time was spent incubating (in relation to time present in the colony) by T-males than control males. However, the mates of T-males did not spend more time incubating than control females to compensate for male neglect, although they did spend more time on the territory. Egg temperature in T-male nests was significantly lower than in control nests, but no significant difference in the length of incubation or hatching success between the two groups was found. In birds, the effects of high testosterone levels on male behaviour during incubation have only been analysed in a polyandrous species whose females usually do not contribute to incubation. The present results thus suggest that those males of a monogamous species with bi-parental incubation that sustain high testosterone levels after laying, thus reducing their contributions to incubation, will be confronted with a lack of compensation from their mates during incubation. Finally, this lack of female compensation seems to be mediated by behavioural interactions with the male rather than by her absence from the colony.  相似文献   

3.
I evaluated the effect of incubation temperature on phenotypes of the veiled chameleon, Chamaeleo calyptratus. I chose this species for study because its large clutch size (30-40 eggs or more) allows replication within clutches both within and among experimental treatments. The major research objectives were (1) to assess the effect of constant low, moderate, and high temperatures on embryonic development, (2) to determine whether the best incubation temperature for embryonic development also produced the "best" hatchlings, and (3) to determine how a change in incubation temperature during mid-development would affect phenotype. To meet these objectives, I established five experimental temperature regimes and determined egg survival and incubation length and measured body size and shape, selected body temperatures, and locomotory performance of lizards at regular intervals from hatching to 90 d, or just before sexual maturity. Incubation temperature affected the length of incubation, egg survival, and body mass, but did not affect sprint speed or selected body temperature although selected body temperature affected growth in mass independently of treatment and clutch. Incubation at moderate temperatures provided the best conditions for both embryonic and post-hatching development. The highest incubation temperatures were disruptive to development; eggs had high mortality, developmental rate was low, and hatchlings grew slowly. Changes in temperature during incubation increased the among-clutch variance in incubation length relative to that of constant temperature treatments. J. Exp. Zool. 309A:435-446, 2008. (c) 2008 Wiley-Liss, Inc.  相似文献   

4.
Parker SL  Andrews RM 《Oecologia》2007,151(2):218-231
Cold environmental temperature is detrimental to reproduction by oviparous squamate reptiles by prolonging incubation period, negatively affecting embryonic developmental processes, and by killing embryos in eggs directly. Because low soil temperature may prevent successful development of embryos in eggs in nests, the geographic distributions of oviparous species may be influenced by the thermal requirements of embryos. In the present study, we tested the hypothesis that low incubation temperature determines the northern distributional limit of the oviparous lizard Sceloporus undulatus. To compare the effects of incubation temperature on incubation length, egg and hatchling survival, and hatchling phenotypic traits, we incubated eggs of S. undulatus under temperature treatments that simulated the thermal environment that eggs would experience if located in nests within their geographic range at 37°N and north of the species’ present geographic range at latitudes of 44 and 42°N. After hatching, snout–vent length (SVL), mass, tail length, body condition (SVL relative to mass), locomotor performance, and growth rate were measured for each hatchling. Hatchlings were released at a field site to evaluate growth and survival under natural conditions. Incubation at temperatures simulating those of nests at 44°N prolonged incubation and resulted in hatchlings with shorter SVL relative to mass, shorter tails, shorter hind limb span, slower growth, and lower survival than hatchlings from eggs incubated at temperatures simulating those of nests at 37 and 42°N. We also evaluated the association between environmental temperature and the northern distribution of S. undulatus. We predicted that the northernmost distributional limit of S. undulatus would be associated with locations that provide the minimum heat sum (∼495 degree-days) required to complete embryonic development. Based on air and soil temperatures, the predicted northern latitudinal limit of S. undulatus would lie at ∼40.5–41.5°N. Our predicted value closely corresponds to the observed latitudinal limit in the eastern United States of ∼40°N. Our results suggest that soil temperatures at northern latitudes are not warm enough for a sufficient length of time to permit successful incubation of S. undulatus embryos. These results are consistent with the hypothesis that incubation temperature is an important factor limiting the geographic distributions of oviparous reptile species at high latitudes and elevations.  相似文献   

5.
A. Ancel    S. Liess    H. Girard 《Journal of Zoology》1995,235(4):621-634
Inside the viable range 36–39°C, the development of the domestic guinea fowl embryo was studied during artificial incubation of about 5000 eggs. Equations giving internal and external pipping and hatching time as a function of incubation temperature were developed. Whatever temperature was used, internal and external pipping occurred at 89% and 95% of hatching time, respectively. The chronological development in ovo of the guinea fowl is illustrated by growth curves. Guinea fowl grew in ovo at the same rate as the chicken embryo. The embryonic mortality is significantly affected by incubation temperature. The thermal tolerance of the embryo follows a parabolic curve: temperatures below or above 37.2°C increase the rate of mortality. During the course of the incubation, the mortality frequency was mainly distributed around two peaks (each one third of the total), which occurred during the first days of incubation, that is, within the first 12% of the incubation time, and during the last days, that is, after 85% of the incubation time. At the optimal 37.2°C temperature, these two peaks occurred on days 1–3 and 23–27, respectively.  相似文献   

6.
Because the maintenance of proper developmental temperatures during avian incubation is costly to parents, embryos of many species experience pronounced variation in incubation temperature. However, the effects of such temperature variation on nestling development remain relatively unexplored. To investigate this, we artificially incubated wild blue tit (Cyanistes caeruleus L.) clutches at 35.0°, 36.5°, or 38.0°C for two-thirds of the incubation period. We returned clutches to their original nests before hatching and subsequently recorded nestling growth and resting metabolic rate. The length of the incubation period decreased with temperature, whereas hatching success increased. Nestlings from the lowest incubation temperature group had shorter tarsus lengths at 2 weeks of age, but body mass and wing length were not affected by temperature. In addition, nestlings from the lowest temperature group had a significantly higher resting metabolic rate compared with mid- and high-temperature nestlings, which may partly explain observed size differences between the groups. These findings suggest that nest microclimate can influence nestling phenotype, but whether observed differences carry over to later life-history stages remains unknown.  相似文献   

7.
The study of temperature‐dependent sex determination (TSD) in vertebrates has attracted major scientific interest. Recently, concerns for species with TSD in a warming world have increased because imbalanced sex ratios could potentially threaten population viability. In contrast, relatively little attention has been given to the direct effects of increased temperatures on successful embryonic development. Using 6603 days of sand temperature data recorded across 6 years at a globally important loggerhead sea turtle rookery—the Cape Verde Islands—we show the effects of warming incubation temperatures on the survival of hatchlings in nests. Incorporating published data (n = 110 data points for three species across 12 sites globally), we show the generality of relationships between hatchling mortality and incubation temperature and hence the broad applicability of our findings to sea turtles in general. We use a mechanistic approach supplemented by empirical data to consider the linked effects of warming temperatures on hatchling output and on sex ratios for these species that exhibit TSD. Our results show that higher temperatures increase the natural growth rate of the population as more females are produced. As a result, we project that numbers of nests at this globally important site will increase by approximately 30% by the year 2100. However, as incubation temperatures near lethal levels, the natural growth rate of the population decreases and the long‐term survival of this turtle population is threatened. Our results highlight concerns for species with TSD in a warming world and underline the need for research to extend from a focus on temperature‐dependent sex determination to a focus on temperature‐linked hatchling mortalities.  相似文献   

8.
Abstract Many ectothermic animals are subject to fluctuating environmental temperatures during incubation as well as post‐birth. Numerous studies examined the effects of incubation temperature or ambient temperature on various aspects of offspring phenotype. We investigated whether incubation temperature and ambient temperature have an interactive effect on offspring performance. Our study animal, the ectothermic vertebrate Lampropholis delicata (common garden skink; De Vis 1888), experiences fluctuating environmental temperatures caused by differential invasion of an exotic plant Vinca major (blue periwinkle). In the laboratory, eggs from wild‐caught females were assigned to different incubation temperatures that mimicked variation in natural nests. The feeding performance and digestion time of each hatchling was tested at ambient temperatures that represented environments invaded to different degrees by periwinkle. Incubation and ambient temperature interacted to affect a lizard's mobility, the time that it took to capture, subdue and handle a prey, and the number of handling ‘errors’ that it made while foraging. For a number of these characteristics, incubation‐induced changes to a lizard's mass significantly affected this relationship. Irrespective of size, no interaction effect was found for digestion time: lizards digested food faster at warmer temperatures, regardless of incubation temperature. Thus, temperatures experienced during incubation may alter an animal's phenotype so that the surrounding thermal environment differentially affects aspects of feeding performance. Our results also demonstrate that incubation environment can induce changes to morphology and behaviour that carry over into a lizard's early life, and that in some cases these differences in phenotype interact to affect performance. We suggest that the immediate removal of exotic plants as part of a weed control strategy could have important implications for the foraging performance, and presumably fitness, of ectothermic animals.  相似文献   

9.
林炽贤  杜宇  邱清波  计翔 《动物学报》2007,53(3):437-445
作者用蜡皮蜥(Leiolepis reevesii)为模型动物,检验产卵于温暖且热稳定巢内的蜥蜴应有相对较高但较窄的孵化温度的假设。卵在三个恒定温度(27、30和33℃)、一个波动温度处理下孵化。温度的平均值而非方差影响孵化期,27、30和33℃的平均孵化期分别为101.1、69.6和55.3d。幼体性别不受孵化温度影响。不同处理孵出的幼体仅有稍许形态差异,但运动表现差异显著。27℃孵出幼体在跑道上的表现比其它处理孵出幼体差。卵能在27℃和33℃下孵化,但这两个孵化温度并不适宜。蜡皮蜥适宜的孵化温度范围可能处于最频繁的巢温变化范围(28℃-32℃)内。与其它在低温生境或温暖生境但产卵于浅巢的有鳞类爬行动物相比较,蜡皮蜥有相对较高但较窄适宜的卵孵化温度。因此,作者的数据支持上述假设。  相似文献   

10.
Although incubation temperatures have been documented extensively in birds, few studies have followed fluctuations in temperatures throughout the length of the incubation period in natural nests. We recorded incubation temperatures of Nazca boobies Sula granti by replacing real booby eggs with a model egg containing an internal floating data logger for three-day intervals in 47 nests ("experimental group"). We also added the same logger eggs to 14 booby nests at the time of egg-laying, where they remained as the second egg in the clutches for the entire incubation period ("logger egg control group"). Finally, we measured surface temperatures of real eggs with an infrared sensor ("real egg control group"). In both control groups, the average temperature increased after laying, then stabilized for the remainder of the incubation period. The experimental group differed from the controls, because the cool logger egg could have been introduced at any point in the incubation cycle, not just at the beginning. Egg temperature in the experimental group had a parabolic relationship with day of incubation, because parents receiving a logger egg during the third quarter of incubation showed an exaggerated heating response during the subsequent two days. We infer from this that the parents are especially sensitive to egg temperature during this period, and it may thus represent a critical period of unknown nature for the embryo.  相似文献   

11.
Incubation conditions for eggs influence offspring quality and reproductive success. One way in which parents regulate brooding conditions is by balancing the thermal requirements of embryos with time spent away from the nest for self-maintenance. Age related changes in embryo thermal tolerance would thus be expected to shape parental incubation behavior. We use data from unmanipulated Black-capped Chickadee (Poecile atricapillus) nests to examine the temporal dynamics of incubation, testing the prediction that increased heat flux from eggs as embryos age influences female incubation behavior and/or physiology to minimize temperature fluctuations. We found that the rate of heat loss from eggs increased with embryo age. Females responded to increased egg cooling rates by altering incubation rhythms (more frequent, shorter on- and off- bouts), but not brood patch temperature. Consequently, as embryos aged, females were able to increase mean egg temperature and decrease variation in temperature. Our findings highlight the need to view full incubation as more than a static rhythm; rather, it is a temporally dynamic and finely adjustable parental behavior. Furthermore, from a methodological perspective, intra- and inter-specific comparisons of incubation rhythms and average egg temperatures should control for the stage of incubation.  相似文献   

12.
Successful establishment and range expansion of non-native species often require rapid accommodation of novel environments. Here, we use common-garden experiments to demonstrate parallel adaptive evolutionary response to a cool climate in populations of wall lizards (Podarcis muralis) introduced from southern Europe into England. Low soil temperatures in the introduced range delay hatching, which generates directional selection for a shorter incubation period. Non-native lizards from two separate lineages have responded to this selection by retaining their embryos for longer before oviposition—hence reducing the time needed to complete embryogenesis in the nest—and by an increased developmental rate at low temperatures. This divergence mirrors local adaptation across latitudes and altitudes within widely distributed species and suggests that evolutionary responses to climate can be very rapid. When extrapolated to soil temperatures encountered in nests within the introduced range, embryo retention and faster developmental rate result in one to several weeks earlier emergence compared with the ancestral state. We show that this difference translates into substantial survival benefits for offspring. This should promote short- and long-term persistence of non-native populations, and ultimately enable expansion into areas that would be unattainable with incubation duration representative of the native range.  相似文献   

13.
The developmental trajectory of an organism is influenced by the interaction between its genes and the environment in which it develops. For example, the phenotypic traits of a hatchling reptile can be influenced by the organism's genotype, by incubation temperature, and by genetically coded norms of reaction for thermally labile traits. The evolution of parthenogenesis provides a unique opportunity to explore such effects: a hybrid origin of this trait in vertebrates modifies important aspects of the genotype (e.g., heterozygosity, polyploidy) and may thus impact not only on the phenotype generally, but also on the ways in which incubation temperature affects expression of the phenotype. The scarcity of vertebrate parthenogenesis has been attributed to developmental disruptions, but previous work has rarely considered reaction norms of embryogenesis in this respect. We used closely related sexual and asexual races of the Australian gecko Heteronotia binoei, which include those with multiple origins of parthenogenesis, to explore the ways in which reproductive modes (sexual, asexual), incubation temperatures (24, 27, and 30 degrees C), and the interaction between these factors affected hatchling phenotypes. The hatchling traits we considered included incubation period, incidence of deformities, hatchling survivorship, body size and shape, scalation (including fluctuating asymmetry), locomotor performance, and growth rate. Developmental success was slightly reduced (higher proportion of abnormal offspring) in parthenogenetic lineages although there was no major difference in hatching success. Incubation temperature affected a suite of traits including incubation period, tail length, body mass relative to egg mass, labial scale counts, running speed, growth rate, and hatchling survival. Our data also reveal an interaction between reproductive modes and thermal regimes, with the phenotypic traits of parthenogenetic lizards less sensitive to incubation temperature than was the case for their sexual relatives. Thus, the evolution of asexual reproduction in this species complex has modified both mean hatchling viability and the norms of reaction linking hatchling phenotypes to incubation temperature. Discussions on the reasons why parthenogenetic organisms are scarce in nature should take into account interactive effects such as these; future work could usefully try to tease apart the roles of parthenogenesis, its hybrid origin (and thus effects on ploidy and heterozygosity, etc.), and clonal selection in generating these divergent embryonic responses.  相似文献   

14.
Theory predicts shorter embryonic periods in species with greater embryo mortality risk and smaller body size. Field studies of 80 passerine species on three continents yielded data that largely conflicted with theory; incubation (embryonic) periods were longer rather than shorter in smaller species, and egg (embryo) mortality risk explained some variation within regions, but did not explain larger differences in incubation periods among geographic regions. Incubation behavior of parents seems to explain these discrepancies. Bird embryos are effectively ectothermic and depend on warmth provided by parents sitting on the eggs to attain proper temperatures for development. Parents of smaller species, plus tropical and southern hemisphere species, commonly exhibited lower nest attentiveness (percent of time spent on the nest incubating) than larger and northern hemisphere species. Lower nest attentiveness produced cooler minimum and average embryonic temperatures that were correlated with longer incubation periods independent of nest predation risk or body size. We experimentally tested this correlation by swapping eggs of species with cool incubation temperatures with eggs of species with warm incubation temperatures and similar egg mass. Incubation periods changed (shortened or lengthened) as expected and verified the importance of egg temperature on development rate. Slower development resulting from cooler temperatures may simply be a cost imposed on embryos by parents and may not enhance offspring quality. At the same time, incubation periods of transferred eggs did not match host species and reflect intrinsic differences among species that may result from nest predation and other selection pressures. Thus, geographic variation in embryonic development may reflect more complex interactions than previously recognized.  相似文献   

15.
Incubation is a vital component of reproduction and parental care in birds. Maintaining temperatures within a narrow range is necessary for embryonic development and hatching of young, and exposure to both high and low temperatures can be lethal to embryos. Although it is widely recognized that temperature is important for hatching success, little is known about how variation in incubation temperature influences the post‐hatching phenotypes of avian offspring. However, among reptiles it is well known that incubation temperature affects many phenotypic traits of offspring with implications for their future survival and reproduction. Although most birds, unlike reptiles, physically incubate their eggs, and thus behaviourally control nest temperatures, variation in temperature that influences embryonic development still occurs among nests within a population. Recent research in birds has primarily been limited to populations of megapodes and waterfowl; in each group, incubation temperature has substantial effects on hatchling phenotypic traits important for future development, survival, and reproduction. Such observations suggest that incubation temperature (and incubation behaviours of parents) is an important but underappreciated parental effect in birds and may represent a selective force instrumental in shaping avian reproductive ecology and life‐history traits. However, much more research is needed to understand how pervasive phenotypic effects of incubation temperature are among birds, the sources of variation in incubation temperature, and how effects on phenotype arise. Such insights will not only provide foundational information regarding avian evolution and ecology, but also contribute to avian conservation.  相似文献   

16.
Many avian species initiate incubation before clutch completion, resulting in an asynchronous hatch of their eggs. Several studies suggest that early laid eggs in birds that exhibit synchronous hatching may be more vulnerable to the negative impacts of ambient temperatures and/or trans-shell infection by microbes. However, nearly all of these studies have exposed fertile eggs to environmental conditions in artificial cavity nests, and thus, the effects of exposure of eggs to environmental conditions in open-cup nests remains largely unknown. Therefore, we directly compared hatchability and rates of trans-shell infection in fertile domestic chicken eggs that were exposed for 1–5 days in either open-cup or cavity nests. Eggs in open-cup nests had significantly higher rates of trans-shell infection and lower hatchability than those in cavity nests. These differences may result from different environmental conditions in open-cup nests, as well as in rates of microbial colonization of eggs. Cavity nests maintained slightly higher temperatures than did open-cup nests in the same location; thus, eggs in cavity nests were exposed for a longer period of time to temperatures ≥27°C, the temperature at which antibacterial enzymatic activity is initiated in the albumen. Moreover, microbial growth on eggs was much higher in open-cup nests even when eggs in these nests were cleaned daily with alcohol. It may be that the increased exposure to rain events in open-cup nests may facilitate microbial growth and egg infection. Thus, our data suggest that open-cup nesters may face constraints on reproduction different from those that cavity nesters face, and therefore may make choices regarding incubation that reflect these challenges.  相似文献   

17.
Ji X  Gao JF  Han J 《Zoological science》2007,24(4):384-390
Most studies on egg incubation in reptiles have relied on constant temperature incubation in the laboratory rather than on simulations of thermal regimes in natural nests. The thermal effects on embryos in constant-temperature studies often do not realistically reflect what occurs in nature. Recent studies have increasingly recognized the importance of simulating natural nest temperatures rather than applying constant-temperature regimes. We incubated Bungarus multicintus eggs under three constant and one fluctuating-temperature regimes to evaluate the effects of constant versus fluctuating incubation temperatures on hatching success and hatchling phenotypes. Hatching success did not differ among the four treatments, and incubation temperature did not affect the sexual phenotype of hatchlings. Incubation length decreased as incubation temperature increased, but eggs incubated at fluctuating temperatures did not differ from eggs incubated at constant temperatures with approximately the same mean in incubation length. Of the hatchling phenotypes examined, residual yolk, fat bodies and locomotor performance were more likely affected by incubation temperature. The maximal locomotor speed was fastest in the fluctuating-temperature and 30 degrees C treatments and slowest in the 24 degrees C treatment, with the 27 degrees C treatment in between. The maximal locomotor length was longest in the fluctuating-temperature treatment and shortest in the 24 degrees C and 27 degrees C treatments, with the 30 degrees C treatment in between. Our results show that fluctuating incubation temperatures do not influence hatching success and hatchling size and morphology any differently than constant temperatures with approximately the same mean, but have a positive effect on locomotor performance of hatchlings.  相似文献   

18.
Crocodilians have temperature-dependent sex determination (TSD) in which incubation temperature determines sex of embryo. Global warming is expected to alter hatchling sex ratio, leading to the extinction of small populations. Regional climate influence on crocodile nest microclimate and hatchlings' characteristics is poorly known. Here, microclimate in natural nests of American crocodile (Crocodylus acutus) and its relation with incubation length, hatchling sex and nesting success was studied in Banco Chinchorro Biosphere Reserve (Mexico) from 2007 to 2010. Temperature and relative humidity in different locations within and outside the nests were registered by data loggers. Incident solar radiation above nest was calculated from hemispheric photographs. Incubation length, proportion of hatchling reaching complete development and hatchling sex were determined at hatching. Nest temperatures exhibited a cyclic daily fluctuation due to solar radiation, which is the major heat source for nests. Clutch temperature was relatively stable and its daily amplitude was negatively correlated with clutch depth and size. Rainfall was the major source of clutch temperature decrease. Clutch and metabolic temperatures increased significantly during incubation. A small sample size failed to demonstrate a statistical relationship between length of incubation and mean clutch temperature. Proportion of embryos reaching complete development depended on maximum and minimum clutch temperature, maximum daily amplitude of clutch temperature and maximum decrease in clutch temperature on a period ≤4 day. Results confirmed a Female-Male-Female TSD pattern for C. acutus, with 31 and 32.5 °C as possible pivotal temperatures. Population and hatchling sex ratios were male-biased and fate of crocodiles of Banco Chinchorro could depend on the magnitude of temperature increase in the future.  相似文献   

19.
Summary Thermal effects on seed germination are considered through the changes brought about by temperature in the germination capacity, in the germination rate, and in the distribution of the relative frequency of germination along the incubation time. A number of questions of general thermobiological interest are thus raised, entailing the need of an analysis of the temperature dependence of the seed germination rate.A treatment of these rates by the activation-energy approach cannot be general, for their Arrhenius plots are not always linear. Moreover, it is shown that any process displaying a temperature optimum (as happens in the germination of most seed species) cannot follow one of the fundamental tenets of the collision rate theory. The need of a theoretical treatment stressing the essential role of the partition of energy within the seed system has led to an analysis using the absolute reaction rate theory. New experimental prospects for the physiology of seed germination are thus raised, concerning the meaning of the temperature cardinal points, the growth pattern of the embryo in germinating seeds, the dual effect of protein thermodenaturation, the effects of high hydrostatic pressures, and a whole pharmacological line of work.The cybernetic counterpart of the thermodynamic view of seed germination appears in the study of the distribution of the relative frequency of germination along the isothermal incubation time. In some species of seeds the thermal communication between the environment and the seed growth effector can be shown to proceed by molecular collisions at all germination isotherms. In the seeds ofDolichos biflorus this communication through random thermal noise prevails only at temperatures close to both extreme limits of germination. Both in this species and inCalotropis procera there is a temperature range (encompassing the optimum) within which a temperature signal is superimposed upon the gaussian noise. An interpretation is proposed according to which the temperature signal is transduced in a protein-conformation code.  相似文献   

20.
Parental effects play a vital role in shaping offspring phenotype. In birds, incubation behaviour is a critical parental effect because it influences the early developmental environment and can therefore have lifelong consequences for offspring phenotype. Recent studies that manipulated incubation temperature found effects on hatchling body composition, condition and growth, suggesting that incubation temperature could also affect energetically costly physiological processes of young birds that are important to survival (e.g. immune responses). We artificially incubated wood duck (Aix sponsa) eggs at three biologically relevant temperatures. Following incubation, we used two immunoassays to measure acquired immune responses of ducklings. Ducklings incubated at the lowest temperature had reduced growth, body condition and responses to both of our immune challenges, compared with those from the higher temperatures. Our results show that incubation temperatures can be an important driver of phenotypic variation in avian populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号