首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenological responses of plants to climate change in an urban environment   总被引:3,自引:0,他引:3  
Global climate change is likely to alter the phenological patterns of plants due to the controlling effects of climate on plant ontogeny, especially in an urbanized environment. We studied relationships between various phenophases (i.e., seasonal biological events) and interannual variations of air temperature in three woody plant species (Prunus davidiana, Hibiscus syriacus, and Cercis chinensis) in the Beijing Metropolis, China, based on phenological data for the period 1962–2004 and meteorological data for the period 1951–2004. Analysis of phenology and climate data indicated significant changes in spring and autumn phenophases and temperatures. Changes in phenophases were observed for all the three species, consistent with patterns of rising air temperatures in the Beijing Metropolis. The changing phenology in the three plant species was reflected mainly as advances of the spring phenophases and delays in the autumn phenophases, but with strong variations among species and phenophases in response to different temperature indices. Most phenophases (both spring and autumn phenophases) had significant relationships with temperatures of the preceding months. There existed large inter- and intra-specific variations, however, in the responses of phenology to climate change. It is clear that the urban heat island effect from 1978 onwards is a dominant cause of the observed phenological changes. Differences in phenological responses to climate change may cause uncertain ecological consequences, with implications for ecosystem stability and function in urban environments.  相似文献   

2.
Aims Changes in habitat characteristics and species composition in successional gradients could determine temporal variation in phenology of second-growth forests. We evaluated phenological patterns in tree species occurring in successional forests in southern Brazil, aiming to assess community changes along succession. We tested for general patterns and phenophase seasonality of trees of forests in successional stages and for differences in occurrence, concentration, frequency and duration of phenophases.  相似文献   

3.
Background and Aims Recent global changes, particularly warming and drought, have had worldwide repercussions on the timing of flowering events for many plant species. Phenological shifts have also been reported in alpine environments, where short growing seasons and low temperatures make reproduction particularly challenging, requiring fine-tuning to environmental cues. However, it remains unclear if species from such habitats, with their specific adaptations, harbour the same potential for phenological plasticity as species from less demanding habitats.Methods Fourteen congeneric species pairs originating from mid and high elevation were reciprocally transplanted to common gardens at 1050 and 2000 m a.s.l. that mimic prospective climates and natural field conditions. A drought treatment was implemented to assess the combined effects of temperature and precipitation changes on the onset and duration of reproductive phenophases. A phenotypic plasticity index was calculated to evaluate if mid- and high-elevation species harbour the same potential for plasticity in reproductive phenology.Key Results Transplantations resulted in considerable shifts in reproductive phenology, with highly advanced initiation and shortened phenophases at the lower (and warmer) site for both mid- and high-elevation species. Drought stress amplified these responses and induced even further advances and shortening of phenophases, a response consistent with an ‘escape strategy’. The observed phenological shifts were generally smaller in number of days for high-elevation species and resulted in a smaller phenotypic plasticity index, relative to their mid-elevation congeners.Conclusions While mid- and high-elevation species seem to adequately shift their reproductive phenology to track ongoing climate changes, high-elevation species were less capable of doing so and appeared more genetically constrained to their specific adaptations to an extreme environment (i.e. a short, cold growing season).  相似文献   

4.
《Plant Ecology & Diversity》2013,6(5-6):453-468
Background: In tundra ecosystems, the adjustment of phenological events, such as bud burst, to snowmelt timing is crucial to the climatic adaptation of plants. Natural small-scale variations in microclimate potentially enable plant populations to persist in a changing climate.

Aims: To assess how plant phenology responds to natural differences in snowmelt timing.

Methods: We observed the timing of eight vegetative and reproductive phenophases in seven dwarf-shrub species in relation to differences in snowmelt timing on a small spatial scale in an alpine environment in subarctic Finland.

Results: Some species and phenophases showed accelerated development with later snowmelt, thus providing full or partial compensation for the shorter snow-free period. Full compensation resulted in synchronous occurrence of phenophases across the snowmelt gradient. In other species, there was no acceleration of development. The timing of phenophases varied between two consecutive years and two opposing mountain slope aspects.

Conclusions: The results have shown three distinct patterns in the timing of phenophases in relation to snowmelt and suggest alternative strategies for adaptation to snowmelt timing. These strategies potentially apply to other species and tundra ecosystems and provide a framework, enabling one to compare and generalise phenological responses to snowmelt timing under different future climate scenarios.  相似文献   

5.
The snow cover extent is an important factor for the structure and composition of arctic and alpine tundra communities. Over the last few decades, snowmelt in many arctic and alpine regions has advanced, causing the growing season to start earlier and last longer. In a field experiment in subarctic tundra in Interior Alaska, I manipulated the timing of snowmelt and measured the response in mortality, phenology, growth, and reproduction of the eight dominant plant species. I then tested whether the phenological development of these species was controlled by snowmelt date or by temperature (in particular growing degree days, GDD). In order to expand our understanding of plant sensitivity to snowmelt timing, I explored whether the response patterns can be generalized with regard to the temporal niche of each species. Differences in the phenology between treatments were only found for the first stages of the phenological development (=phenophases). The earlier the temporal niche (i.e., the sooner after snowmelt a species develops) the more its phenology was sensitive to snowmelt. Later phenophases were mostly controlled by GDD, especially in late-developing species. In no species did an earlier snowmelt and a longer growing season directly enhance plant fitness or fecundity, in spite of the changes in the timing of plant development. In conclusion, the temporal niche of a species’ phenological development could be a predictor of its response to snowmelt timing. However, only the first phenophases were susceptible to changes in snowmelt, and no short-term effects on plant fitness were found.  相似文献   

6.
A total of 105 climber species were recorded and studied for their altitudinal distribution and phenology. Relatively higher percentage (54%) of deciduous species was recorded. In general, the climbers were distributed throughout the region between altitudes of 300–3500 m. However, maximum (more than 60%) species were confined either below or at around 1500 m altitude. Species richness declines gradually towards the higher altitudes, the decline was more sharp in evergreen species. The different phenological activities were usually governed by the seasonal variations in a year. Seasonality of flowering suggested the prevalence of insect pollination. Whereas, fruit types indicated equal sharing of biotic and abiotic dispersal. Study concludes, the distribution and nature of various climber species of Kumaun in Indian Central Himalaya, depends largely upon altitude and its climatic variable temperature. Whereas, the seasonality of rains plays an important role in seasonal progression of phenophases.  相似文献   

7.
物候模型研究进展   总被引:12,自引:0,他引:12  
近年来随着全球气候变暖,物候提前,物候学的研究越来越受到人们的关注.通过建立物候模型使物候期的预知成为可能,从而为生产实践活动提供依据和指导.本文探讨了物候模型研究的意义,总结了影响植物和昆虫物候的温度、水分、光和养分等主要环境因子的作用.根据国内外物候模型的研究现状,重点介绍了作物、树木、植被和昆虫4类物候模型的研究内容和进展.作物物候模型注重生理生态过程;树木物候模型以统计方法为主,但近期也有尝试将激素水平作为物候的决定因素;植被物候模型以遥感技术的应用为发展趋势;昆虫物候模型则进一步对发育起点的确定和对温度因子的修正,GIS的引入将昆虫物候模型的应用范围扩大.最后指出了目前物候模型研究中存在的问题.  相似文献   

8.
Worldwide, many plant species are experiencing an earlier onset of spring phenophases due to climate warming. Rapid recent temperature increases on the Tibetan Plateau (TP) have triggered changes in the spring phenology of the local vegetation. However, remote sensing studies of the land surface phenology have reached conflicting interpretations about green-up patterns observed on the TP since the mid-1990s. We investigated this issue using field phenological observations from 1990 to 2006, for 11 dominant plants on the TP at the levels of species, families (Gramineae—grasses and Cyperaceae—sedges) and vegetation communities (alpine meadow and alpine steppe). We found a significant trend of earlier leaf-out dates for one species (Koeleria cristata). The leaf-out dates of both Gramineae and Cyperaceae had advanced (the latter significantly, starting an average of 9 days later per year than the former), but the correlation between them was significant. The leaf-out dates of both vegetation communities also advanced, but the pattern was only significant in the alpine meadow. This study provides the first field evidence of advancement in spring leaf phenology on the TP and suggests that the phenology of the alpine steppe can differ from that of the alpine meadow. These findings will be useful for understanding ecosystem responses to climate change and for grassland management on the TP.  相似文献   

9.
为了探讨我国热带地区植物物候与气候变化的关系, 利用海南岛尖峰岭热带树木园12种热带常绿阔叶乔木植物2003-2011年物候观测资料结合同期月平均气温和降水数据, 运用积分回归分析方法, 筛选出影响海南岛12种乔木(8种本地种、4种引入种)展叶始期与开花始期的气象因素以及不同气象因素月值变化(月平均气温和月降水量)综合作用对这些树种物候期的动态影响, 最终建立积分回归-物候预测模型, 对气候变化背景下我国热带地区植物物候变化趋势进行了预测。结果表明: 海南岛12种热带常绿阔叶乔木展叶始期与开花始期均对气候变化做出较明显的响应, 几乎所有的树种展叶始期与开花始期的发生都受到气温和降水的共同影响。多数树种展叶始期受展叶前冬季及春季气温影响显著, 且在临近展叶始期的月份, 气温的影响更显著。上一年秋季月降水量对各树种开花始期的影响比其他时段显著, 这验证了降水的滞后性假说。本地种展叶始期对气候变化的响应比其开花始期对气候变化的响应更敏感, 引入种则相反。各树种展叶和开花在受气温和降水综合影响最明显的月份(假设其余11个月份月平均气温和月降水量不变), 月平均气温升高0.1 ℃、月降水量增加10 mm可使展叶始期和开花始期提前或推迟1-3天。积分回归分析方法为解释海南岛热带常绿阔叶乔木物候与气温和降水的动态关系提供了有效的途径, 基于气温和降水与物候资料建立的积分回归-物候预测模型具有对气温和降水变化影响下物候响应的解释率和预测精度高(R2≥ 0.943)的优点, 对于预测气候变化影响下的植物物候变化趋势有一定的适用性。  相似文献   

10.
《植物生态学报》2014,38(6):585
为了探讨我国热带地区植物物候与气候变化的关系, 利用海南岛尖峰岭热带树木园12种热带常绿阔叶乔木植物2003-2011年物候观测资料结合同期月平均气温和降水数据, 运用积分回归分析方法, 筛选出影响海南岛12种乔木(8种本地种、4种引入种)展叶始期与开花始期的气象因素以及不同气象因素月值变化(月平均气温和月降水量)综合作用对这些树种物候期的动态影响, 最终建立积分回归-物候预测模型, 对气候变化背景下我国热带地区植物物候变化趋势进行了预测。结果表明: 海南岛12种热带常绿阔叶乔木展叶始期与开花始期均对气候变化做出较明显的响应, 几乎所有的树种展叶始期与开花始期的发生都受到气温和降水的共同影响。多数树种展叶始期受展叶前冬季及春季气温影响显著, 且在临近展叶始期的月份, 气温的影响更显著。上一年秋季月降水量对各树种开花始期的影响比其他时段显著, 这验证了降水的滞后性假说。本地种展叶始期对气候变化的响应比其开花始期对气候变化的响应更敏感, 引入种则相反。各树种展叶和开花在受气温和降水综合影响最明显的月份(假设其余11个月份月平均气温和月降水量不变), 月平均气温升高0.1 ℃、月降水量增加10 mm可使展叶始期和开花始期提前或推迟1-3天。积分回归分析方法为解释海南岛热带常绿阔叶乔木物候与气温和降水的动态关系提供了有效的途径, 基于气温和降水与物候资料建立的积分回归-物候预测模型具有对气温和降水变化影响下物候响应的解释率和预测精度高(R2≥ 0.943)的优点, 对于预测气候变化影响下的植物物候变化趋势有一定的适用性。  相似文献   

11.
高新月  戴君虎  陶泽兴 《生态学报》2022,42(24):10253-10263
植物物候是植物生活史中的重要性状,也是指示气候与自然环境变化的重要指标,现已成为全球变化领域的研究热点之一。传统物候研究多假设物候由气候因素决定,如气温、降水、光照等,并主要从植物物候的年际变化角度探讨了气候因素对物候特征的影响。然而,不同物种的物候存在较大差异表明植物物候还与自身生物学特性(如系统发育和功能性状)有关,但植物生物学特性如何影响植物物候仍缺乏深入研究。基于北京地区44种木本植物1965-2018年的展叶始期和开花始期观测资料,以展叶始期和开花始期的3类物候特征(平均物候期、物候对温度的响应敏感度和物候期的积温需求)为例,探究植物物候特征与系统发育和功能性状的关系。首先,利用系统发育信号Blomberg’s K和进化模型检验植物物候特征是否具有系统发育保守性,并通过系统发育信号表征曲线直观表达植物物候特征的进化模式;之后,利用广义估计方程分析植物生活型、传粉型与物候特征的关系,以揭示不同植物的资源利用方式及生存策略的差异。研究发现:(1)除展叶始期的温度敏感度外,其余物候特征的进化均受随机遗传漂变和自然选择力的共同作用,可推断物候特征具有系统发育保守性,即亲缘关系越近的物种物候特征越相似。(2)开花始期的系统发育信号强度比展叶始期更大,表明繁殖物候的系统发育可能比生长物候更保守。(3)植物展叶始期及其积温需求与生活型密切相关。灌木比乔木的展叶时间早、积温需求少。植物开花始期与传粉型相关,风媒植物开花显著早于虫媒植物。研究成果有助于深入理解物候变化的生物学机制,对于丰富物候学的理论研究有重要意义,同时对植物保护也具有重要的指导价值。  相似文献   

12.
植物物候反映了过去一段时间气候条件的累积对植物生长和发育的综合影响.通过收集1974-2007年民勤荒漠区典型草本植物马蔺的物候观测数据以及民勤治沙综合试验站同步观测的气象资料,分析了马蔺的物候特征及其对不同时间尺度气候变化的响应过程,结果表明:(1)马蔺的平均生长季长度约为201.7 d,并呈现出逐年增加的趋势,大致表现为每10a延长0.8d,但随着年份的变化并不显著(P>0.1).(2)除开花期的开始时间出现明显的延后外(P<0.1),马蔺其它物候期的开始和结束时间均表现为轻微的延后趋势,且随着年份的变化不显著(P>0.1).马蔺各个物候期的持续时间不同年份差异较大,其中萌动期、开花期和果熟期的持续时间随着年份出现减少的趋势,而展叶期和黄枯期的持续时间随着年份则出现增加的趋势,但其变化均不显著(P>0.1).(3)马蔺整个生长季的延长可能受气温和降水的综合作用,其物候期的开始时间对物候期开始之前3周到3个月之间的积温有着显著的响应(P<0.01),而对于长时间尺度的积温则响应不显著(P>0.1);其部分物候期的开始时间对于中短时间尺度的累积降雨有着较显著的响应(P<0.1),但是对于长时间尺度的累积降雨则所有物候期都响应较弱(P>0.1).(4)马蔺的物候期特征除了受区域气候变化影响之外,可能还与其自身的水分利用机制有关,未来的气候变化可能会进一步影响到该地区典型荒漠草本植物的物候特征.  相似文献   

13.
Recent increases in global temperatures have contributed to advancing phenology of plants and animals. These increases in temperature have been shown to affect the phenological phases (phenophases) of plants and birds in Ireland, but less is known about the effect on the phenophases of Irish insects. Records of the flight periods of 59 species of Irish moths over the past 35 years (1974–2009) were obtained from a public monitoring group. Observations were analysed across the country using generalized additive models (GAMs) weighted by total yearly population numbers for each species. The results of the statistical analyses showed that 45 of the 59 species studied have a significantly earlier first sighting date now than when observations began. With this earlier emergence, 44 of the 59 species also have a significantly longer flight season over the same 35‐year period. The extent of these changes varies across the country and by species life history. In particular, species emerging in spring are advancing at a much faster rate than species emerging during the summer. Many of these changes in first sighting are negatively correlated with rising temperatures in Ireland, particularly in late spring and early summer (May and June). The variation in phenological advancement in the moth species of Ireland is extremely complex and may be influenced more by species life history than by the phenology of interacting species, such as host plants.  相似文献   

14.
Question: Different plant growth forms may have distinctly different functioning in ecosystems. Association of phenological patterns with growth form will therefore help elucidate the role of phenology in an ecosystem. We ask whether growth forms of common vascular plants differ in terms of vegetative and flowering phenology, and if such phenological differences are consistent across environmental gradients caused by landscape‐scale topography. Location: A high‐latitude alpine landscape in Finnmark County, Norway (70°N). Methods: We assessed vegetative and flowering phenology repeatedly in five growth forms represented by 11 common vascular plant species across an altitudinal gradient and among differing slope aspects. Results: Species phenology clustered well according to growth form, and growth form strongly explained variation in both flowering and vegetative phenology. Altitude and aspect were poor predictors of phenological variation. Vegetative phenology of the growth forms, ranked from slowest to fastest, was in the order evergreen shrubs <sedges‐deciduous shrubs <grasses <forbs, while a reverse ranking was found for flowering phenology. Conclusion: Growth form‐specific phenological patterns are associated with fundamentally different abilities for resource acquisition and resource conservation. The weak effect of landscape‐scale topographic factors indicates that variation within growth forms is mainly influenced by local environmental factors not accounted for in this study. On the basis of these results, we argue that growth forms should be considered as predictors of phenology together with the customary use of topography and normalized difference vegetation index, especially when assessing the role of phenology in an ecosystem.  相似文献   

15.
Morphological characteristics related to spatial occupation, reproduction and adaptations to grazing were used to characterize the most frequent species in a therophytic pastureland of Central Spain.Periodic ploughing is a traditional practice in these pastures and allows observation of successional change. In the present study, four neighbouring slopes of differing time since last ploughing were chosen. Species biomass was measured at different times during the annual growing season for two different slope positions.Grazing pressure is an important environmental factor affecting ecosystem organization, the most palatable plants tending to show increasing biomass with succession. In the most mature stages, there is a predominance of species characterized by horizontal occupation of space and sprouting after mowing or grazing.During succession segregation of the different morphological characteristics occurs in slope sectors related to geomorphological dynamics. Similarly, phenological development tends to be later in pastures in the lowest slope zones, due probably to their greater summer soil moisture content.Nomenclature follows: Tutin et al., 1964–1980. Flora Europaea.  相似文献   

16.
胡植  王焕炯  戴君虎  葛全胜 《生态学报》2021,41(23):9119-9129
物候是植物在长期适应环境过程中形成的生长发育节点。长时间地面物候观测数据表明,近50年全球乔木、灌木、草本植物的春季物候期受温度升高、降水与辐射变化等影响,以每10年2 d到10 d的速率提前。但因植物物候响应气候因子的机制仍不清楚,导致对未来气候变化情景下的植物物候变化预测存在较大的不确定性。在此背景下,控制实验成为探究气候因子对植物物候影响机制的重要手段。综述了物候控制实验中不同气候因子(温度、水分、光照等)的控制方法。总结了目前为止控制实验在植物物候对气候因子响应方面得到的重要结论,发现植物春季物候期(展叶、开花等)主要受冷激、驱动温度与光周期的影响,秋季物候期(叶变色和落叶)主要受低温、短日照与水分胁迫的影响。提出未来物候控制实验应重点解决木本植物在秋季进入休眠的时间点确定、低温和短日照对木本植物秋季物候的交互作用量化、草本植物春秋季物候的影响因子识别等科学问题。  相似文献   

17.
根据中国物候观测网资料并结合气象观测数据, 重新编制了北京颐和园地区1981-2010年的自然历。通过与原自然历比较, 揭示了北京物候季节变化特征, 分析了1963年以来物候季节变化的可能原因。研究发现: 与原自然历相比, 1981-2010年北京的春、夏季开始时间分别提前了2天和5天, 秋、冬季开始时间分别推迟了1天和4天; 夏、秋季长度分别延长了6天和3天, 春、冬季长度则分别缩短了3天和6天; 各个物候期的平均日期、最早日期、最晚日期在春、夏季以提前为主, 在秋、冬季以推迟为主; 且春、秋、冬季节内部分物候期次序也出现了不同程度的变化。春、夏、冬季开始日期前的气温变化和秋季开始日期前的日照时数变化可能是北京颐和园地区物候季节变化的主要原因; 不同物种、不同物候期对气温变化的响应程度不同, 导致了物候季节内各种物候现象出现的先后顺序发生变化。  相似文献   

18.
西安木本植物物候与气候要素的关系   总被引:5,自引:0,他引:5       下载免费PDF全文
白洁  葛全胜  戴君虎  王英 《植物生态学报》2010,34(11):1274-1282
根据1963–2007年中国物候观测网西安观测站的物候和气温、降水资料,分析了西安站34种木本植物春季展叶始期、展叶盛期、始花期和盛花期等4个关键物候期的变化趋势、对气候变化的阶段响应特点及其与气温、降水变化的关系。结果表明,1963年以来,西安地区气温呈显著上升趋势,特别是1994年前后,气温发生明显突变,上升趋势更加明显;西安春季物候变化主要呈现提前趋势。在45年中,观测到的34种植物的展叶始期平均提前1天,展叶盛期平均提前1.4天,始花期平均提前9天,盛花期平均提前12天;以突变点为界,34个物种1995–2007年的4种物候期比1963–1994年平均提前了4.34±0.77天;春季物候期的早晚主要受春季气温的影响,特别是春季物候期发生当月和上一月的平均气温对物候期的影响最为显著。叶物候和物候发生期前一月的降水量有较为明显的相关关系,花物候期和降水的关系不明显。  相似文献   

19.
A phenology model for estimating the timings of bud burst – one of the most influential phenological phases for the simulation of tree growth – is presented in this study. The model calculates the timings of the leafing of beech (Fagus sylvatica L.) and oak (Quercus robur L.) and the May shoot of Norway spruce (Picea abies L.) and Scots pine (Pinus sylvestris L.) on the basis of the daily maximum temperature. The data for parameterisation and validation of the model have been taken from 40 climate and 120 phenological stations in southern Germany with time series for temperature and bud burst of up to 30 years. The validation of the phenology module by means of an independent data set showed correlation coefficients for comparisons between observed and simulated values of 54% (beech), 55% (oak), 59% (spruce) and 56% (pine) with mean absolute errors varying from 4.4 days (spruce) to 5.0 days (pine). These results correspond well with the results of other – often more complex – phenology models. After the phenology module had been implemented in the tree-growth model BALANCE, the growth of a mixed forest stand with the former static and the new dynamic timings for the bud burst was simulated. The results of the two simulation runs showed that phenology has to be taken into account when simulating forest growth, particularly in mixed stands.  相似文献   

20.
The phenological responses to climate of residents and migrants (short- and long-distance) differ. Although few previous studies have focussed on this topic, the agree that changes in phenology are more apparent for residents than for long-distance migrants. We analysed the breeding times of two selected residents (Sitta europaea, Parus major) and one long-distance migrant (Ficedula albicollis) from 1961 to 2007 in central Europe. The timing of the phenophases of all three bird species showed a significant advance to earlier times. Nevertheless, the most marked shift was observed for the long-distance migrant (1.9 days per decade on average in mean laying date with linearity at the 99.9 % confidence level). In contrast, the shifts shown by the residents were smaller (1.6 days for S. europaea and 1.5 days for P. major also on average in mean laying date for both, with linearity at the 95 % confidence level). Spearman rank correlation coefficients calculated for pairs of phenophases of given bird species in 20-year subsamples (e.g. 1961–1980, 1962–1981) showed higher phenological separation between the residents and the migrant. This separation is most apparent after the 1980s. Thus, our results indicate that the interconnections between the studied phenological stages of the three bird species are becoming weaker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号