首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Insulin and nutrients activate hepatic p70 S6 kinase (S6K1) to regulate protein synthesis. Paradoxically, activation of S6K1 also leads to the development of insulin resistance. In this study, we investigated the effect of TRB3, which acts as an endogenous inhibitor of Akt, on S6K1 activity in vitro and in vivo. In cultured cells, overexpression of TRB3 completely inhibited insulin-stimulated S6K1 activation by mammalian target of rapamycin, whereas knockdown of endogenous TRB3 increased both basal and insulin-stimulated activity. In C57BL/6 mice, adenoviral overexpression of TRB3 inhibited insulin-stimulated activation of hepatic S6K1. In contrast, overexpression of TRB3 did not inhibit nutrient-stimulated S6K1 activity. We also investigated the effect of starvation, feeding, or insulin treatment on TRB3 levels and S6K1 activity in the liver of C57BL/6 and db/db mice. Both insulin and feeding activate S6K1 in db/db mice, but only insulin activates in the C57BL/6 strain. TRB3 levels were 3.5-fold higher in db/db mice than C57BL/6 mice and were unresponsive to feeding or insulin, whereas both treatments reduced TRB3 in C57BL/6 mice. Akt was activated by insulin alone in the C57BL/6 strain and but not in db/db mice. Both insulin and feeding activated mammalian target of rapamycin similarly in these mice; however, feeding was unable to activate the downstream target S6K1 in C57BL/6 mice. These results suggest that the nutrient excess in the hyperphagic, hyperinsulinemic db/db mouse primes the hepatocyte to respond to nutrients resulting in elevated S6K1 activity. The combination of elevated TRB3 and constitutive S6K1 activity results in decreased insulin signaling via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway.  相似文献   

3.
It is now known that prenatal ethanol (EtOH) exposure is associated with impaired glucose tolerance and insulin resistance in rat offspring, but the underlying mechanism(s) is not known. To test the hypothesis that in vivo insulin signaling through phosphatidylinositol 3 (PI3)-kinase is reduced in skeletal muscle of adult rat offspring exposed to EtOH in utero, we gave insulin intravenously to these rats and probed steps in the PI3-kinase insulin signaling pathway. After insulin treatment, EtOH-exposed rats had decreased tyrosine phosphorylation of the insulin receptor beta-subunit and of insulin receptor substrate-1 (IRS-1), as well as reduced IRS-1-associated PI3-kinase in the gastrocnemius muscle compared with control rats. There was no significant difference in basal or insulin-stimulated Akt activity between EtOH-exposed rats and controls. Insulin-stimulated PKC isoform zeta phosphorylation and membrane association were reduced in EtOH-exposed rats compared with controls. Muscle insulin binding and peptide contents of insulin receptor, IRS-1, p85 subunit of PI3-kinase, Akt/PKB, and atypical PKC isoform zeta were not different between EtOH-exposed rats and controls. Thus insulin resistance in rat offspring exposed to EtOH in utero may be explained, at least in part, by impaired insulin signaling through the PI3-kinase pathway in skeletal muscle.  相似文献   

4.
A wide variety of biological activities including the major metabolic actions of insulin is regulated by phosphatidylinositol (PI) 3-kinase. However, the downstream effectors of the various signaling pathways that emanate from PI 3-kinase remain unclear. Akt (protein kinase B), a serine-threonine kinase with a pleckstrin homology domain, is thought to be one such downstream effector. A mutant Akt (Akt-AA) in which the phosphorylation sites (Thr308 and Ser473) targeted by growth factors are replaced by alanine has now been shown to lack protein kinase activity and, when overexpressed in CHO cells or 3T3-L1 adipocytes with the use of an adenovirus vector, to inhibit insulin-induced activation of endogenous Akt. Akt-AA thus acts in a dominant negative manner in intact cells. Insulin-stimulated protein synthesis, which is sensitive to wortmannin, a pharmacological inhibitor of PI 3-kinase, was abolished by overexpression of Akt-AA without an effect on amino acid transport into the cells, suggesting that Akt is required for insulin-stimulated protein synthesis. Insulin activation of p70 S6 kinase was inhibited by ~75% in CHO cells and ~30% in 3T3-L1 adipocytes, whereas insulin-induced activation of endogenous Akt was inhibited by 80 to 95%, by expression of Akt-AA. Thus, Akt activity appears to be required, at least in part, for insulin stimulation of p70 S6 kinase. However, insulin-stimulated glucose uptake in both CHO cells and 3T3-L1 adipocytes was not affected by overexpression of Akt-AA, suggesting that Akt is not required for this effect of insulin. These data indicate that Akt acts as a downstream effector in some, but not all, of the signaling pathways downstream of PI 3-kinase.  相似文献   

5.
Calorie restriction [CR; 60% of ad libitum (AL) intake] improves insulin-stimulated glucose transport, concomitant with enhanced phosphorylation of Akt. The mechanism(s) for the CR-induced increase in Akt phosphorylation of insulin-stimulated muscle is unknown. The purpose of this study was to determine whether CR increased the ratio of catalytic to regulatory subunits favoring enhanced phosphatidylinositol (PI) 3-kinase signaling, which may contribute to increases in Akt phosphorylation and glucose transport in insulin-stimulated muscles. We measured the PI 3-kinase regulatory (p85alpha/beta, p50alpha, and p55alpha) and catalytic (p110) subunits abundance in skeletal muscle from male F344B/N rats after 8 wk of AL or CR treatment. In CR compared with AL muscles, regulatory isoforms, p50alpha and p55alpha abundance were approximately 40% lower (P < 0.01) with unchanged p85alpha/beta levels. There was no diet-related change in catalytic subunit abundance. Despite lower IRS-1 levels ( approximately 35%) for CR vs. AL, IRS-1-p110 association in insulin-stimulated muscles was significantly (P < 0.05) enhanced by approximately 50%. Downstream of PI 3-kinase, CR compared with AL significantly enhanced Akt serine phosphorylation by 1.5-fold higher (P = 0.01) and 3-O-methylglucose transport by approximately 20% in muscles incubated with insulin. The increased ratio of PI 3-kinase catalytic to regulatory subunits favors enhanced insulin signaling, which likely contributes to greater Akt phosphorylation and improved insulin sensitivity associated with CR in skeletal muscle.  相似文献   

6.
Ras-induced cell transformation is mediated through distinct downstream signaling pathways, including Raf, Ral-GEFs-, and phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathways. In some cell types, strong activation of the Ras-Raf-MEK-extracellular signal-regulated kinase (ERK) cascade leads to cell cycle arrest rather than cell division. We previously reported that constitutive activation of this pathway induces sustained proliferation of primary cultures of postmitotic chicken neuroretina (NR) cells. We used this model system to investigate the respective contributions of Ras downstream signaling pathways in Ras-induced cell proliferation. Three RasV12 mutants (S35, G37, and C40) which differ by their ability to bind to Ras effectors (Raf, Ral-GEFs, and the p110 subunit of PI 3-kinase, respectively) were able to induce sustained NR cell proliferation, although none of these mutants was reported to transform NIH 3T3 cells. Furthermore, they all repressed the promoter of QR1, a neuroretina growth arrest-specific gene. Overexpression of B-Raf or activated versions of Ras effectors Rlf-CAAX and p110-CAAX also induced NR cell division. The mitogenic effect of the RasC40-PI 3-kinase pathway appears to involve Rac and RhoA GTPases but not the antiapoptotic Akt (protein kinase B) signaling. Division induced by RasG37-Rlf appears to be independent of Ral GTPase activation and presumably requires an unidentified mechanism. Activation of either Ras downstream pathway resulted in ERK activation, and coexpression of a dominant negative MEK mutant or mKsr-1 kinase domain strongly inhibited proliferation induced by the three Ras mutants or by their effectors. Similar effects were observed with dominant negative mutants of Rac and Rho. Thus, both the Raf-MEK-ERK and Rac-Rho pathways are absolutely required for Ras-induced NR cell division. Activation of these two pathways by the three distinct Ras downstream effectors possibly relies on an autocrine or paracrine loop, implicating endogenous Ras, since the mitogenic effect of each Ras effector mutant was inhibited by RasN17.  相似文献   

7.
The ability of the growth factors epidermal growth factor (EGF), transforming growth factor alpha, and platelet-derived growth factor to exert insulin-like effects on glucose transport and lipolysis were examined in human and rat fat cells. No effects were found in rat fat cells, whereas EGF (EC(50) for glucose transport approximately 0.02 nm) and transforming growth factor alpha (EC(50) approximately 0.2 nm), but not platelet-derived growth factor, mimicked the effects of insulin (EC(50) approximately 0.2 nm) on both pathways. EGF receptors, but not EGF, were abundantly expressed in human fat cells as well as in human skeletal muscle. EGF increased the tyrosine phosphorylation of several proteins (the EGF receptor, insulin receptor substrate (IRS)-1, IRS-2, and Grb2-associated binder 1), whereas Shc and Gab2 were only weakly and inconsistently phosphorylated. p85, the regulatory subunit of phosphatidylinositol 3-kinase (PI 3-kinase), was also found to associate with all of these docking molecules, showing that EGF activated PI 3-kinase pools that were additional to those of insulin. EGF and/or insulin increased protein kinase B/Akt serine phosphorylation to a similar extent, whereas mitogen-activated protein kinase phosphorylation was more pronounced for EGF than for insulin. The impaired insulin-stimulated downstream signaling, measured as protein kinase B/Akt serine phosphorylation, in insulin-resistant cells (Type 2 diabetes) was improved by the addition of EGF. Thus, EGF receptors, but not EGF, are abundantly expressed in human fat cells and skeletal muscle. EGF mimics the effects of insulin on both the metabolic and mitogenic pathways but utilize in part different signaling pathways. Both insulin and EGF increase the tyrosine phosphorylation and activation of IRS-1 and IRS-2, whereas EGF is also capable of activating additional PI 3-kinase pools and, thus, can augment the downstream signaling of insulin in insulin-resistant states like Type 2 diabetes.  相似文献   

8.
Insulin and insulin-like growth factor I signals are mediated via phosphorylation of a family of insulin receptor substrate (IRS) proteins, which may serve both complementary and overlapping functions in the cell. To study the metabolic effects of these proteins in more detail, we established brown adipocyte cell lines from wild type and various IRS knockout (KO) animals and characterized insulin action in these cells in vitro. Preadipocytes derived from both wild type and IRS-2 KO mice could be fully differentiated into mature brown adipocytes. In differentiated IRS-2 KO adipocytes, insulin-induced glucose uptake was decreased by 50% compared with their wild type counterparts. This was the result of a decrease in insulin-stimulated Glut4 translocation to the plasma membrane. This decrease in insulin-induced glucose uptake could be partially reconstituted in these cells by retrovirus-mediated re-expression of IRS-2, but not overexpression of IRS-1. Insulin signaling studies revealed a total loss of IRS-2-associated phosphatidylinositol (PI) 3-kinase activity and a reduction in phosphotyrosine-associated PI 3-kinase by 30% (p < 0.05) in the KO cells. The phosphorylation and activity of Akt, a major downstream effector of PI 3-kinase, as well as Akt-dependent phosphorylation of glycogen synthase kinase-3 and p70S6 kinase were not affected by the lack of IRS-2; however, there was a decrease in insulin stimulation of Akt associated with the plasma membrane. These results provide evidence for a critical role of IRS-2 as a mediator of insulin-stimulated Glut4 translocation and glucose uptake in adipocytes. This occurs without effects in differentiation, total activation of Akt and its downstream effectors, but may be caused by alterations in compartmentalization of these downstream signals.  相似文献   

9.
During differentiation, expression of protein phosphatase-2Calpha (PP2Calpha) is increased in 3T3-L1 adipocytes. To elucidate the role of PP2Calpha in insulin signaling, we overexpressed wild-type (WT) PP2Calpha by adenovirus-mediated gene transfer in 3T3-L1 adipocytes. Overexpression of PP2Calpha-WT enhanced the insulin sensitivity of glucose uptake without any changes in the early steps of insulin signaling. Infection with adenovirus 5 expressing PP2Calpha-WT increased phosphatidylinositol 3-kinase (PI3K) activities in the immunoprecipitate using antibody against the p85 or p110 subunit under both basal and insulin-stimulated conditions, followed by activation of downstream steps in the PI3K pathway, such as phosphorylation of Akt, glycogen synthase kinase-3, and atypical protein kinase C. In contrast, overexpression of the phosphatase-defective mutant PP2Calpha(R174G) did not produce such effects. Furthermore, overexpression of PP2Calpha-WT (but not PP2Calpha(R174G)) decreased the (32)P-labeled phosphorylation state as well as the gel mobility shift of the p85 subunit, suggesting that dephosphorylation of the p85 subunit by PP2Calpha activation might stimulate PI3K catalytic activity. Moreover, knockdown of PP2Calpha by transfection of small interfering RNA led to a significant decrease in Akt phosphorylation. In addition, microinjection of anti-PP2Calpha antibody or PP2Calpha small interfering RNA led to decreased insulin-stimulated GLUT4 translocation. In conclusion, PP2Calpha is a new positive regulator of insulin sensitivity that acts through a direct activation of PI3K in 3T3-L1 adipocytes.  相似文献   

10.
To investigate the role of insulin receptor substrate-1 (IRS-1) and its downstream signaling in insulin-induced thermogenic differentiation of brown adipocytes, we have reconstituted IRS-1-deficient fetal brown adipocytes (IRS-1(-/-)) with wild-type IRS-1 (IRS-1(wt)). The lack of IRS-1 resulted in the inability of insulin to induce IRS-1-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity and Akt phosphorylation in IRS-1(-/-) brown adipocytes. In addition, these cells showed an impairment in activating alpha-Akt, beta-Akt, and gamma-Akt isoforms upon insulin stimulation. Reconstitution of IRS-1(-/-) brown adipocytes with IRS-1(wt) restored the IRS-1/PI 3-kinase/Akt signaling pathway. Treatment of wild-type brown adipocytes with insulin for 24 h up-regulated uncoupling protein-1 (UCP-1) expression and transactivated the UCP-1 promoter; this effect was abolished in the absence of IRS-1 or in the presence of an Akt inhibitor and further recovered after IRS-1(wt) reconstitution. Neither UCP-2 nor UCP-3 was up-regulated by insulin in wild-type and IRS-1-deficient brown adipocytes. Insulin stimulated the expression of CCAAT/enhancer-binding protein alpha (C/EBPalpha) and its DNA binding activity in wild-type brown adipocytes but not in IRS-1(-/-) cells. However, insulin stimulation of both C/EBPalpha expression and binding activity was restored after IRS-1(wt) reconstitution of deficient cells. Retrovirus-mediated expression of C/EBPalpha and peroxisome proliferator-activated receptor gamma in IRS-1(-/-) brown adipocytes up-regulated UCP-1 protein content and transactivated UCP-1 promoter regardless of insulin stimulation. Both C/EBPalpha and peroxisome proliferator-activated receptor gamma reconstituted FAS mRNA expression, but only C/EBPalpha restored insulin sensitivity in the absence of IRS-1. Finally, reconstitution of IRS-1(-/-) brown adipocytes with the IRS-1 mutants IRS-1(Phe-895), which lacks IRS-1/growth factor receptor binding protein 2 binding but not IRS-1/p85-PI 3-kinase binding, or with IRS-1(Tyr-608/Tyr-628/Tyr-658), which only binds p85-PI 3-kinase, induced UCP-1 expression and transactivated the UCP-1 promoter. These data provide strong evidence for an essential role of IRS-1 through the PI 3-kinase/Akt signaling pathway inducing UCP-1 gene expression by insulin.  相似文献   

11.
A number of reports have identified phosphatidylinositol 3-kinase as a downstream effector of Ras in various cellular settings, in contrast to others supporting the notion that phosphatidylinositol 3-kinase acts upstream of Ras. Here, we used Xenopus oocytes, a model of Ras-mediated cell cycle progression (G2/M transition) to analyze the contribution of phosphatidylinositol 3-kinase to insulin/Ras-dependent signaling pathways leading to germinal vesicle breakdown and to ascertain whether phosphatidylinositol 3-kinase acts upstream or downstream of Ras in those signaling pathways. We analyzed the process of meiotic maturation induced by progesterone, insulin or micro-injected oncogenic Ras (Lys12) proteins in the presence and absence of specific inhibitors of phosphatidylinositol 3-kinase activity. As expected, the progesterone-induced maturation was independent of phosphatidylinositol 3-kinase since similar rates of germinal vesicle breakdown were produced by the hormone in the presence and absence of wortmannin and LY294002. In contrast, insulin-induced germinal vesicle breakdown was completely blocked by pre-incubation with the inhibitors prior to insulin treatment. Interestingly, similar rates of germinal vesicle breakdown were obtained in Ras (Lys12)-injected oocytes, independently of whether or not they had been pre-treated with phosphatidylinositol 3-kinase inhibitors. The effect of wortmannin or LY294002 on MAPK and Akt activation by progesterone, insulin or Ras was also analyzed. Whereas insulin activated those kinases in a phosphatidylinositol 3-kinase-dependent manner, progesterone and Ras were able to activate those kinases in the absence of phosphatidylinositol 3-kinase activity. Since Ras is a necessary and sufficient downstream component of insulin signaling pathways leading to germinal vesicle breakdown, these observations demonstrate that phosphatidylinositol 3-kinase is not a downstream effector of Ras in insulin/Ras-dependent signaling pathways leading to entry into the M phase in Xenopus oocytes.  相似文献   

12.
Prenatal alcohol exposure (EtOH) results in insulin resistance in rats of both sexes with increased expression of hepatic gluconeogenic genes and glucose production. To investigate whether hepatic insulin signaling is defective, we studied 3-mo-old female offspring of dams that were given EtOH during pregnancy compared with those from pair-fed and control dams. We performed an intraperitoneal pyruvate tolerance test, determined the phosphorylation status of hepatic phosphoinositide-dependent protein kinase-1 (PDK1), Akt, and PKCzeta before and after intravenous insulin bolus, and measured mRNA and in vivo acetylation of TRB3 (tribbles 3) and PTEN (phosphatase and tensin homolog deleted on chromosome ten) as well as the expression of the histone acetylase (HAT) PCAF (p300/CREB-binding protein-associated factor), histone deacetylase-1 (HDAC1), and HAT and HDAC activities. In EtOH compared with pair-fed and control offspring, basal and pyruvate-induced blood glucose was increased, insulin-induced PDK1, Akt, and PKCzeta phosphorylation was reduced, and expression of PTEN and TRB3 was increased while their acetylation status was decreased in association with increased HDAC and decreased HAT activities. Thus female adult rats prenatally exposed to EtOH have increased gluconeogenesis, reduced insulin signaling, and increased PTEN and TRB3 expression in the liver. In addition, PTEN and TRB3 are hypoacetylated, which can contribute to Akt-inhibiting activity. These results suggest that hepatic insulin resistance in rats prenatally exposed to EtOH is explained, at least in part, by increased PTEN and TRB3 activity due to both increased gene expression and reduced acetylation.  相似文献   

13.
Xenopus oocytes from unprimed frogs possess insulin-like growth factor I (IGF-I) receptors but lack insulin and IGF-I receptor substrate 1 (IRS-1), the endogenous substrate of this kinase, and fail to show downstream responses to hormonal stimulation. Microinjection of recombinant IRS-1 protein enhances insulin-stimulated phosphatidylinositol (PtdIns) 3-kinase activity and restores the germinal vesicle breakdown response. Activation of PtdIns 3-kinase results from formation of a complex between phosphorylated IRS-1 and the p85 subunit of PtdIns 3-kinase. Microinjection of a phosphonopeptide containing a pYMXM motif with high affinity for the src homology 2 (SH2) domain of PtdIns 3-kinase p85 inhibits IRS-1 association with and activation of the PtdIns 3-kinase. Formation of the IRS-1-PtdIns 3-kinase complex and insulin-stimulated PtdIns 3-kinase activation are also inhibited by microinjection of a glutathione S-transferase fusion protein containing the SH2 domain of p85. This effect occurs in a concentration-dependent fashion and results in a parallel loss of hormone-stimulated oocyte maturation. These inhibitory effects are specific and are not mimicked by glutathione S-transferase fusion proteins expressing the SH2 domains of ras-GAP or phospholipase C gamma. Moreover, injection of the SH2 domains of p85, ras-GAP, and phospholipase C gamma do not interfere with progesterone-induced oocyte maturation. These data demonstrate that phosphorylation of IRS-1 plays an essential role in IGF-I and insulin signaling in oocyte maturation and that this effect occurs through interactions of the phosphorylated YMXM/YXXM motifs of IRS-1 with SH2 domains of PtdIns 3-kinase or some related molecules.  相似文献   

14.
Class Ia phosphoinositide (PI) 3-kinase is a central component in growth factor signaling and is comprised of a p110 catalytic subunit and a regulatory subunit, the most common family of which is derived from the p85alpha gene (Pik3r1). Optimal signaling through the PI 3-kinase pathway depends on a critical molecular balance between the regulatory and catalytic subunits. In wild-type cells, the p85 subunit is more abundant than p110, leading to competition between the p85 monomer and the p85-p110 dimer and ineffective signaling. Heterozygous disruption of Pik3r1 results in increased Akt activity and decreased apoptosis by insulin-like growth factor 1 (IGF-1) through up-regulated phosphatidylinositol (3,4,5)-triphosphate production. Complete depletion of p85alpha, on the other hand, results in significantly increased apoptosis due to reduced PI 3-kinase-dependent signaling. Thus, a reduction in p85alpha represents a novel therapeutic target for enhancing IGF-1/insulin signaling, prolongation of cell survival, and protection against apoptosis.  相似文献   

15.
Insulin receptor substrate-1 (IRS-1) is a major substrate of the insulin receptor and acts as a docking protein for Src homology 2 domain containing signaling molecules that mediate many of the pleiotropic actions of insulin. Insulin stimulation elicits serine/threonine phosphorylation of IRS-1, which produces a mobility shift on SDS-PAGE, followed by degradation of IRS-1 after prolonged stimulation. We investigated the molecular mechanisms and the functional consequences of these phenomena in 3T3-L1 adipocytes. PI 3-kinase inhibitors or rapamycin, but not the MEK inhibitor, blocked both the insulin-induced electrophoretic mobility shift and degradation of IRS-1. Adenovirus-mediated expression of a membrane-targeted form of the p110 subunit of phosphatidylinositol (PI) 3-kinase (p110CAAX) induced a mobility shift and degradation of IRS-1, both of which were inhibited by rapamycin. Lactacystin, a specific proteasome inhibitor, inhibited insulin-induced degradation of IRS-1 without any effect on its electrophoretic mobility. Inhibition of the mobility shift did not significantly affect tyrosine phosphorylation of IRS-1 or downstream insulin signaling. In contrast, blockade of IRS-1 degradation resulted in sustained activation of Akt, p70 S6 kinase, and mitogen-activated protein (MAP) kinase during prolonged insulin treatment. These results indicate that insulin-induced serine/threonine phosphorylation and degradation of IRS-1 are mediated by a rapamycin-sensitive pathway, which is downstream of PI 3-kinase and independent of ras/MAP kinase. The pathway leads to degradation of IRS-1 by the proteasome, which plays a major role in down-regulation of certain insulin actions during prolonged stimulation.  相似文献   

16.
Binding of insulin to the insulin receptor initiates a cascade of protein phosphorylation and effector recruitment events leading to the activation of multiple distinct signaling pathways. Previous studies suggested that the diversity and specificity of insulin signal transduction are accomplished by both subcellular localization of receptor and the selective activation of downstream signaling molecules. The small GTPase Rab5 is a key regulator of endocytosis. Three Rab5 isoforms (Rab5a, -5b, and -5c) have been identified. Here we exploited the RNA interference technique to specifically knock down individual Rab5 isoforms to determine the cellular function of Rab5 in distinct insulin signaling pathways. Small interference RNA against a single Rab5 isoform had no effect on protein kinase B (PKB)/Akt or MAPK activation by insulin in NIH3T3 cells overexpressing human insulin receptor. However, simultaneous knockdown of all three Rab5 isoforms dramatically attenuated PKB/Akt activation by insulin without affecting MAPK activation. This inhibition of PKB/Akt activation was because of the impaired interaction between insulin receptor substrate 1 and the p85alpha subunit of phosphatidylinositol 3-kinase. These results indicate a requirement of Rab5 in presenting p85 to insulin receptor substrate 1. Additional evidence supporting a role for Rab5 was suggested by studies with GAPex-5, a vps9 domain containing exchange factor. Down-regulation of GAPex-5 impaired insulin-stimulated PKB/Akt activation. Collectively, this study indicates the involvement of Rab5 in insulin signaling.  相似文献   

17.
Insulin resistance can occur in response to many different external insults, including chronic exposure to insulin itself as well as other agonists such as dexamethasone. It is generally thought that such defects arise due to a defect(s) at an early stage in the insulin signaling cascade. One model suggests that this involves activation of the mammalian target of rapamycin/S6 kinase pathway, which inactivates insulin receptor substrate via Ser/Thr phosphorylation. However, we have recently shown that insulin receptor substrate is not a major node for insulin resistance defects. To explore the mechanism of insulin resistance, we have developed a novel system to activate Akt independently of its upstream effectors as well as other insulin-responsive pathways such as mitogen-activated protein kinase. 3T3-L1 adipocytes were rendered insulin-resistant either with chronic insulin or dexamethasone treatment, but conditional activation of Akt2 stimulated hemagglutinin-tagged glucose transporter 4 translocation to the same extent in these insulin-resistant and control cells. However, addition of insulin to cells in which Akt was conditionally activated resulted in a reversion to the insulin-resistant state, indicating a feedforward inhibitory mechanism activated by insulin itself. This effect was overcome with wortmannin, implicating a role for phosphatidylinositol 3-kinase in this inhibitory process. We conclude that in chronic insulin- and dexamethasone-treated cells, acute activation with insulin itself is required to activate a feedforward inhibitory pathway likely emanating from phosphatidylinositol 3-kinase that converges on a target downstream of Akt to cause insulin resistance.  相似文献   

18.
Activation of Akt by multiple stimuli including B cell antigen receptor (BCR) engagement requires phosphatidylinositol 3-kinase and regulates processes including cell survival, proliferation, and metabolism. BCR cross-linking activates three families of non-receptor protein tyrosine kinases (PTKs) and these are transducers of signaling events including phospholipase C and mitogen-activated protein kinase activation; however, the relative roles of PTKs in BCR-mediated Akt activation are unknown. We examined Akt activation in Lyn-, Syk- and Btk-deficient DT40 cells and B cells from Lyn(-/-) mice. BCR-mediated Akt activation required Syk and was partially dependent upon Btk. Increased BCR-induced Akt phosphorylation was observed in Lyn-deficient DT40 cells and Lyn(-/-) mice compared with wild-type cells suggesting that Lyn may negatively regulate Akt function. BCR-induced tyrosine phosphorylation of the phosphatidylinositol 3-kinase catalytic subunit was abolished in Syk-deficient cells consistent with a receptor-proximal role for Syk in BCR-mediated phosphatidylinositol 3-kinase activation; in contrast, it was maintained in Btk-deficient cells, suggesting Btk functions downstream of phosphatidylinositol 3-kinase. Calcium depletion did not influence BCR-induced Akt phosphorylation/activation, showing that neither Syk nor Btk mediates its effects via changes in calcium levels. Thus, BCR-mediated Akt stimulation is regulated by multiple non-receptor PTK families which regulate Akt both proximal and distal to phosphatidylinositol 3-kinase activation.  相似文献   

19.
We evaluated the role of the G alpha-q (Galphaq) subunit of heterotrimeric G proteins in the insulin signaling pathway leading to GLUT4 translocation. We inhibited endogenous Galphaq function by single cell microinjection of anti-Galphaq/11 antibody or RGS2 protein (a GAP protein for Galphaq), followed by immunostaining to assess GLUT4 translocation in 3T3-L1 adipocytes. Galphaq/11 antibody and RGS2 inhibited insulin-induced GLUT4 translocation by 60 or 75%, respectively, indicating that activated Galphaq is important for insulin-induced glucose transport. We then assessed the effect of overexpressing wild-type Galphaq (WT-Galphaq) or a constitutively active Galphaq mutant (Q209L-Galphaq) by using an adenovirus expression vector. In the basal state, Q209L-Galphaq expression stimulated 2-deoxy-D-glucose uptake and GLUT4 translocation to 70% of the maximal insulin effect. This effect of Q209L-Galphaq was inhibited by wortmannin, suggesting that it is phosphatidylinositol 3-kinase (PI3-kinase) dependent. We further show that Q209L-Galphaq stimulates PI3-kinase activity in p110alpha and p110gamma immunoprecipitates by 3- and 8-fold, respectively, whereas insulin stimulates this activity mostly in p110alpha by 10-fold. Nevertheless, only microinjection of anti-p110alpha (and not p110gamma) antibody inhibited both insulin- and Q209L-Galphaq-induced GLUT4 translocation, suggesting that the metabolic effects induced by Q209L-Galphaq are dependent on the p110alpha subunit of PI3-kinase. In summary, (i) Galphaq appears to play a necessary role in insulin-stimulated glucose transport, (ii) Galphaq action in the insulin signaling pathway is upstream of and dependent upon PI3-kinase, and (iii) Galphaq can transmit signals from the insulin receptor to the p110alpha subunit of PI3-kinase, which leads to GLUT4 translocation.  相似文献   

20.
Gestational exposure to ethanol causes fetal alcohol syndrome, which is associated with cerebellar hypoplasia. Previous in vitro studies demonstrated ethanol-impaired neuronal survival with reduced signaling through the insulin receptor (IRbeta). We examined insulin signaling in an experimental rat model of chronic gestational exposure to ethanol in which the pups exhibited striking cerebellar hypoplasia with increased apoptosis. Immunoprecipitation and Western blot analyses detected reduced levels of tyrosyl-phosphorylated IRbeta, tyrosyl-phosphorylated insulin receptor substrate-1 (IRS-1), and p85-associated IRS-1 but no alterations in IRbeta, IRS-1, or p85 protein expression in cerebellar tissue from ethanol-exposed pups. In addition, ethanol exposure significantly reduced the levels of total phosphoinositol 3-kinase, Akt kinase, phospho-BAD (inactive), and glyceraldehyde-3-phosphate dehydrogenase and increased the levels of glycogen synthase kinase-3 activity, activated BAD, phosphatase and tensin homolog deleted in chromosome 10 (PTEN) protein, and PTEN phosphatase activity in cerebellar tissue. Cerebellar neurons isolated from ethanol-exposed pups had reduced levels of insulin-stimulated phosphoinositol 3-kinase and Akt kinase activities and reduced insulin inhibition of PTEN and glycogen synthase kinase-3 activity. The results demonstrate that cerebellar hypoplasia produced by chronic gestational exposure to ethanol is associated with impaired survival signaling through insulin-regulated pathways, including failure to suppress PTEN function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号