首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
ER stress signaling by regulated splicing: IRE1/HAC1/XBP1   总被引:12,自引:0,他引:12  
  相似文献   

6.
7.
8.
9.
10.
11.
The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) triggers the unfolded protein response. IRE1, PERK, ATF6, BiP, EDEM, lipid-linked oligosaccharides (LLOs), and XBP1 directly or indirectly participate in this process. This article provides methods used in our laboratory to quantitatively measure the accumulation of mRNAs encoding BiP and EDEM; splicing of XBP-1; cleavage of ATF6; inhibition of protein synthesis by PERK; and extension of LLOs under control and stress conditions.  相似文献   

12.
Proteins that are unfolded or misfolded in the endoplasmic reticulum (ER) must be targeted for refolding or degradation to maintain the homeostasis of the ER. Derlin-1 was reportedly implicated in the retro-translocation of misfolded proteins from the ER to the cytosol for degradation. In this report, we showed that Derlin-1 was down-regulated in the endothelial cells derived from human hepatic cavernous hemangioma (CHEC) compared with other tested cells. Electron microscopy analysis showed that ER was aberrantly enlarged in CHEC cells, but not in other tested cells. When overexpressed, Derlin-1 induced the dilated ER to return normal size. This ER dynamic was associated with the activation of unfolded protein response (UPR). In CHEC cells where Derlin-1 was down-regulated, increased expression of the immunoglobulin heavy chain-binding protein (Bip) and UPR-specific splicing of X-box DNAbinding protein 1 (XBP1) mRNA were detected, as compared with that in other tested cells, indicating that UPR was activated. After Derlin-1 overexpression, the extent of UPR activation diminished, as evidenced by decreased expression of Bip, reduced amount of the spliced form of XBP1 (XBP1s), and elevated expression of the unspliced form of XBP1 (XBP1u). Taken together, these findings provide another example of a single protein being able to affect ER dynamic in mammalian cells, and an insight into the possible molecular mechanism(s).  相似文献   

13.
丙型肝炎病毒非结构蛋白NS4B诱导细胞非折叠蛋白反应   总被引:1,自引:0,他引:1  
用RT-PCR和免疫印迹的方法检测稳定表达NS4B的HeLa细胞中的XBP1;通过RT-PCR的方法在表达NS4B的HeLa和Huh-7细胞中检测ATF6,Grp78和caspase-12的转录,并且通过报告基因的方法分析XBP1和Grp78启动子活性。实验结果表明:在表达NS4B的HeLa细胞中检测到XBP1的两种形式(剪接和未剪接),此外,在细胞中ATF6、Grp78的转录水平和XBP1、Grp78启动子的荧光素酶活性较没有表达NS4B的HeLa和Huh-7细胞中的量有所增加;通过染色质免疫沉淀实验(ChIP)分析,这些增加可能是由于XBP1结合到了这些基因的启动子上引起的。总之,实验结果可提示HCVNS4B通过ATF6或XBP1途径引起内质网压力,导致UPR反应。NS4B可能在HCV的致病性中起着重要的作用,特别是在慢性肝炎,甚至肝细胞癌中。  相似文献   

14.
15.
16.
未折叠蛋白质应答   总被引:3,自引:0,他引:3  
内质网是真核细胞中蛋白质合成、折叠与分泌的重要细胞器.细胞进化出一套完整的机制来监督和帮助内质网内蛋白质的折叠与修饰.而当错误折叠的蛋白质累积时,细胞通过一系列信号转导途径,对其进行应答,包括增强蛋白质折叠能力、停滞大多数蛋白质的翻译、加速蛋白质的降解等.如果内质网功能素乱持续,细胞将最终启动凋亡程序.这些反应被统称为未折叠蛋白质应答(unfolded protein response,UPR).UPR是多个信号转导通路的总称,包括IRE1-XBP1、PERK-ATF4以及ATF6等信号途径.除了应激条件外,UPR还被用于正常生理条件下的调节,例如胆固醇合成代谢的负反馈调控.  相似文献   

17.
18.
19.
20.
Endoplasmic reticulum (ER) is responsible for folding of secreted and membrane proteins in eukaryotic cells. Disruption of ER protein folding leads to ER stress. Chronic ER stress can cause cell death and is proposed to underlie the pathogenesis of many human diseases. Inositol-requiring enzyme 1 (IRE1) directs a key unfolded protein response signaling pathway that controls the fidelity of ER protein folding. IRE1 signaling may be particularly helpful in preventing chronic ER stress and cell injury by alleviating protein misfolding in the ER. To examine this, we used a chemical-genetic approach to selectively activate IRE1 in mammalian cells and tested how artificial IRE1 signaling affected the fate of misfolded P23H rhodopsin linked to photoreceptor cell death. We found that IRE1 signaling robustly promoted the degradation of misfolded P23H rhodopsin without affecting its wild-type counterpart. We also found that IRE1 used both proteasomal and lysosomal degradation pathways to remove P23H rhodopsin. Surprisingly, when one degradation pathway was compromised, IRE1 signaling could still promote misfolded rhodopsin degradation using the remaining pathway. Last, we showed that IRE1 signaling also reduced levels of several other misfolded rhodopsins with lesser effects on misfolded cystic fibrosis transmembrane conductance regulator. Our findings reveal the diversity of proteolytic mechanisms used by IRE1 to eliminate misfolded rhodopsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号