首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of external pH on the efflux of protons from illuminated spinach chloroplasts have been studied by monitoring the rates of proton-pumping electron transport under a variety of steady-state conditions. Phosphorylation-coupled proton efflux through the ATP synthase (CF0-CF1), determined from the rates of ATP formation and that portion of the total electron transport attributable to phosphorylation, is strongly dependent upon pH over the range 6–9, with little activity below pH 7 and half-maximal activity at pH ≈ 7.6. Noncoupled proton efflux through the ATP synthase, determined in the absence of ADP and phosphate, was also strongly pH sensitive, with little activity below pH 7.5 and half-maximal activity at pH ~- 7.9. When proton efflux via CF0 was prevented by triphenyltin, the rate of passive proton leakage across the membrane was very low and practically insensitive to external pH indicating that the major pH-sensitive pathway(s) for proton efflux in the light involves CF0 · CF1. Modification of CF1 sulfhydryls by Ag+ resulted in an apparent increase in proton efflux via the normally coupled CF0 · CF1 pathway (half-maximal activity = pH 7.6), whereas modification by Hg2+ resulted in an apparent increase in proton efflux via the noncoupled CF0 · CF1 pathway (half-maximal activity = pH 7.9).  相似文献   

2.
The interactions of CF0-CF1 with different lipids were studied by following the stimulation of Mg-ATPase and of Pi-ATP exchange activities of reconstituted CF0-CF1 proteoliposomes. The following results were obtained: (1) Both Pi-ATP exchange and Mg-ATPase activities are stimulated by lipids. Furthermore, the inhibition of Mg-ATPase by N,N′-dicyclohexylcarbodiimide is dependent on the interactions of CF0-CF1 with lipids. (2) A polar lipid extract of thylakoid membranes stimulates Mg-ATPase activity of CF0-CF1 more efficiently than phospholipids. The relative effectiveness of Mg-ATPase stimulation is: chloroplast lipids > soybean phospholipids > phosphatidylcholine/phosphatidylserine (4: 1) > phosphatidylcholine. The rate of Pi-ATP exchange in chloroplast lipids CF0-CF1 proteoliposomes is, however, lower than in soybean lipids CF0-CF1 proteoliposomes, due to their higher permeability to protons. Addition of 10% phosphatidylserine to chloroplast lipids reduces their permeability to protons and stimulates Pi-ATP exchange. (3) The kinetic mechanism of ATPase stimulation by chloroplast lipids is by decreasing the Km (ATP) and by increasing Vmax in comparison to soybean lipid proteoliposomes. This may explain the low affinity for ATP and the slow turnover rate of the purified enzyme in artificial lipids in comparison to the native enzyme in chloroplast thylakoids. (4) Chloroplast lipids lacking monogalactosyldiacylglycerols only poorly activate CF0-CF1. A large stimulation of Pi-ATP exchange is obtained by a mixture of 60% monogalactosyldiacylglycerol and 40% of the rest of the chloroplast lipids, but not by mixtures of monogalactosyldiacylglycerol with phospholipids. Hydrogenation of the unsaturated fatty acids of monogalactosyldiacylglycerol inhibits the activation of CF0-CF1. (5) The results suggest that: (a) interactions of specific chloroplast lipids with CF0-CF1 activates the enzyme by increasing its turnover and its affinity for ATP; (b) specific requirements for CF0-CF1 activation are the presence of monogalactosyldiacylglycerols together with another chloroplast lipid component and of highly unsaturated fatty acids.  相似文献   

3.
Measurements of proton translocation in CF1-depleted, N, N′-dicyclohexylcarbodiimide-resealed broken chloroplasts were made under different light intensities. Kinetic analysis of the data shows that the outward leakage of accumulated protons through CF0 is still dependent on light intensity with a first-order rate constant equal to mR0, where R0 is the initial rate of proton uptake which normally increases with light intensity and m is a characteristic constant which is independent of proton gradient and light intensity. Measurements of proton translocation in these modified chloroplasts cross-linked with glutaraldehyde under illumination and in the dark respectively suggest that the light-dependent proton leakage through CF0 is regulated by conformation change in the membrane. It is proposed that the ovserved regulation of proton leakage through the CF1.CF0 complex in native chloroplasts is for optimizing the steady state synthesis of ATP under different light intensities.  相似文献   

4.
《BBA》1987,891(1):28-39
ATPase activity of CF0CF1 from spinach chloroplasts is specifically stimulated by chloroplast lipids (Pick, U., Gounaris, K., Admon, A. and Barber, J. (1984) Biochim. Biophys. Acta 765, 12–20). The association of CF0-CF1 with isolated lipids and their mixtures has been examined by analyzing the stimulation of ATPase and ATP-Pi exchange activities, by binding studies and by measurement of proton conductance of reconstituted proteoliposomes. Monogalactosyldiacylglycerol is the only chloroplast lipid which by itself activates ATP hydrolysis. A mild saturation of the fatty acids of the lipid partially inhibits the activation. CF0-CF1 has a higher binding capacity for monogalactosyldiacylglycerol (1.5 mg/mg protein) than for other thylakoid glycolipids. However, ATPase activation is not correlated with the amount of bound lipid but rather with its type. For the same amount of bound lipid, monogalactosyldiacylglycerol best activates ATP hydrolysis, while the acidic lipids phosphatidylglycerol and sulphoquinovosyldiacylglycerol inhibit ATPase activity. Optimal activation of ATP-Pi exchange requires, in addition to monogalactosyldiacylglycerol, digalactosyldiacylglycerol and sulphoquinovosyldiacylglycerol at a ratio of 6:3:1, respectively. Correlations between proton conductance, ATP-Pi exchange and uncoupler stimulation of ATPase activity indicate that sulphoquinovosyldiacylglycerol reduces the permeability of the proteoliposomes to protons. The results suggest that: (a) association of CF0-CF1 with polyunsaturated monogalactosyldiacylglycerol greatly stimulates ATPase activity; (b) reconstitution of coupled CF0-CF1 proteoliposomes requires a careful balance of the natural glycolipids of thylakoid membranes in similar proportions to their occurrence in chloroplasts, and (c) sulphoquinovosyldiacylglycerol may control the permeability of chloroplast membranes to protons.  相似文献   

5.
The effects of the local anesthetic dibucaine on coupling between electron transport and ATP synthesis-hydrolysis by the coupling-factor complex (CF0CF1 ATPase) were investigated in thylakoid membranes from Spinacia oleracea L. cv. Monatol. Evidence is presented that inhibition of ATP synthesis was produced by a specific uncoupling mechanism which was based on dibucaine-membrane surface interactions rather than on the interaction of dibucaine with the ATPase complex. Dibucaine reduced the osmotic space of thylakoid vesicles. At low pH of the medium it stimulated ATP hydrolysis beyond the rates obtained with optimum concentrations of ‘classical’ uncouplers. After addition of dibucaine, there was displacement of membrane-bound Mg2+ and strong thylakoid stacking in the presence of only low Mg2+ concentrations. Inhibition of ATP synthesis and transmembrane pH gradient increased with medium pH. Hydrolysis of ATP by isolated CF1 and the CF0CF1 complex was only slightly affected by dibucaine. The data are discussed assuming the involvement of localized proton channels on the membrane surface in protonic coupling of electron transport and ATP synthesis. A hypothesis for the mechanisms of action of local anesthetics at the thylakoid membrane is presented.  相似文献   

6.
Negative staining of purified spinach dicyclohexylcarbodiimide (DCCD) sensitive ATPase revealed a population of 110 Å subunits attached by stalks to short string-like aggregates. The interpretation of these data is that 110 Å CF1 are attached by stalks to an aggregate of CF0.The CF1-CF0 complex was incorporated into phospholipid vesicles; freezefracture analysis of this preparation revealed a homogeneous population of particles spanning the lipid bilayer; these averaged 96 Å in diameter. The DCCD binding proteolipid (apparent molecular weight 7500), an integral component of CF0, was isolated from membranes by butanol extraction and was incorporated rated into phospholipid vesicles. Freeze-fracture analysis of the DCCD-binding proteolipid/vesicle preparation revealed a population of particles averaging 83 Å in diameter suggesting that the DCCD-binding proteolipid self-associates in lipid to form a stable complex. This complex may be required for proton transport across chloroplast membranes in vivo. The size difference between CF0 and DCCD-proteolipid freeze-fracture particles may be related to differences in polypeptide composition of the two complexes.  相似文献   

7.
The isolation of the chloroplast ATP synthase complex (CF0-CF1) and of CF1 from Dunaliella bardawil is described. The subunit structure of the D. bardawil ATPase differs from that of the spinach in that the D. bardawil α subunit migrates ahead of the β subunit and ε-migrates ahead of subunit II of CF0 when separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The CF1 isolated from D. bardawil resembles the CF1 isolated from Chladmydomonas reinhardi in that a reversible, Mg2+-dependent ATPase is induced by selected organic solvents. Glycerol stimulates cyclic photophosphorylation catalyzed by D. bardawil thylakoid membranes but inhibits photophosphorylation catalyzed by spinach thylakoid membranes. Glycerol (20%) also stimulates the rate of ATP-Pi exchange catalyzed by D. bardawil CF0-CF1 proteoliposomes but inhibits the activity with the spinach enzyme. The ethanol-activated, Mg2+-ATPase of the D. bardawil CF1 is more resistant to glycerol inhibition than the octylglucoside-activated, Mg2+-ATPase of spinach CF1 or the ethanol-activated, Mg2+-dependent ATPase of the C. reinhardi CF1. Both cyclic photophosphorylation and ATP-Pi exchange catalyzed by D. bardawil CF0-CF1 are more sensitive to high concentrations of NaCl than is the spinach complex.  相似文献   

8.
《BBA》1985,808(3):415-420
Highly purified preparations of CF0-CF1 from chloroplasts contain a small amount of tightly bound lipids. Extraction and analysis of these lipids show that they are almost exclusively sulpholipids. The calculated amount of bound sulpholipids in spinach and in Dunaliella salina CF0-CF1 preparations are 5 and 20 mols/mol enzyme, respectively. Attempts to exchange the bound lipids with other lipids or with detergents have failed, indicating a very strong association with CF0-CF1.  相似文献   

9.
Jan W.T. Fiolet  Karel Van Dam 《BBA》1973,325(2):230-239
1. The inhibitory action of tetraphenylboron, a lipid-soluble anion, on the proton uptake, the photophosphorylation and the light-induced quenching of the fluorescence of 9-aminoacridine by spinach chloroplasts was studied.2. The inhibition of the three processes by tetraphenylboron was transient; the proton uptake was affected to a much smaller extent than either the photophosphorylation or the fluorescence quenching.3. The inhibitory effects of tetraphenylboron on the proton uptake and the fluorescence quenching of 9-aminoacridine were qualitatively the same in CF1-depleted chloroplasts, that were recoupled with N,N′-dicyclohexylcarbodiimide (DCCD).4. The reversal of the fluorescence quenching of 9-aminoacridine upon addition of tetraphenylboron in the light was found to be very fast, being completed within the response time of the apparatus.5. The presence of tetraalkylammonium salts in the incubation medium prevented the inhibitory effect of tetraphenylboron.6. Tetraphenylboron disappeared from the chloroplast suspension in a light-dependent irreversible way; in the dark no ‘ptake’ of tetraphenylboron could be detected.7. The effects of tetraphenylboron may be explained by the presence of groups with a high affinity for tetraphenylboron in the membrane; these groups become protonated upon illumination of the chloroplasts.  相似文献   

10.
John D. Mills  Peter Mitchell 《BBA》1984,764(1):93-104
Thiol modulation of the chloroplast protonmotive ATPase (CF0-CF1) by preillumination of broken chloroplasts in the presence of dithiothreitol (or preillumination of intact chloroplasts in the absence of added thiols) had the following effects on photophosphorylation. (1) When assayed at pH 8 and saturating light, the initial rate of photophosphorylation was increased by 10–40%. There was an accompanying increase in the rate of coupled electron transport with no significant change in the overall P2e ratio. (2) On lowering the pH of the assay medium to pH 7, the stimulatory effect of thiol modulation on photophosphorylation and coupled electron flow was enhanced. At pH 7, there was also a small increase in P2e ratio. (3) Addition of a non-saturating amount of uncoupler to the assay medium enhanced the stimulatory effect of thiol modulation on photophosphorylation. In the presence of 1 mM NH4Cl, there was only a small increase in coupled electron flow and a correspondingly larger increase in P2e ratio. (4) Lowering the light intensity, or inhibiting electron transport, diminished the stimulatory effect of thiol modulation on photophosphorylation, coupled electron transport and P2e ratio. (5) Under all the above conditions, the ΔpH maintained across the thylakoid membrane was lower after thiol modulation, even when photophosphorylation markedly increased in rate. (6) Thiol modulation of CF0-CF1 increased the observed Michaelis constant for ADP (Km(ADP)) and the apparent maximum rate (Vapp of photophosphorylation by the same factor, so that ratio VappKm was not altered. VappKm was also unaffected by changing the medium pH, but was significantly decreased upon addition of uncouplers to the medium. These results indicate that the observed rate of ATP synthesis catalysed by thiol demodulated chloroplasts is limited kinetically by the fraction (α) of enzyme molecules that are active during photophosphorylation. A model based on a dual pH optimum requirement for activation of CF0-CF1 is presented to explain the dependence of α on ΔpH. Thiol modulation of CF0-CF1 is proposed to stimulate photophosphorylation by causing the enzyme to become active over a lower range of ΔpH, thereby reducing the kinetic limitation on ATP synthesis imposed by the activation process.  相似文献   

11.
The initial rates and steady-state values of proton uptake by broken chloroplasts have been measured as functions of light intensity at various concentrations of chlorophyll, pyocyanine, supporting electrolyte, buffer, as well as pH and temperature. Kinetic analysis of the data shows that the rate of decay of proton gradient due to backward leakage depends on light intensity. Under steady illumination, the decay constant kL is equal to kD + mR0, where R0 is the initial rate of proton uptake which is a function of light intensity, kD is the decay constant in the dark and m is a parameter which is independent of light intensity. Treatment of chloroplasts with lysolecithin, neutral detergent, 2,4-dinitrophenol, or valinomycin in the presence of K+ increases kD without affecting m. Treatment with N,N′-dicyclohexylcarbodiimide or adenylyl imidodiphosphate under appropriate conditions decreases m without affecting kD. Treatment with glutaraldehyde makes kL independent of light intensity and hence m = 0. These results suggest that the light-dependent part (mR0) of kL is due to leakage of protons through the coupling factor (CF1-CF0) complex which can open or close depending on light intensity and that the light-independent part (kD) of the decay constant kL is due to proton leakage elsewhere.  相似文献   

12.
Removal of coupling factor protein (CF1) from spinach thylakoid membranes results in an enhancement of proton permeability but has no effect on chloride or potassium permeability. Anion permeability was measured by the rate of thylakoid packed volume changes. Potassium permeability was monitored by turbidity changes, packed thylakoid volume changes and ion flux studies using 86Rb+ as a tracer. 45Ca2+ was used to measure divalent cation fluxes. CF1-depleted chloroplasts had an unaltered rate of Ca2+ uptake, but the rate of Ca2+ efflux appeared to be increased. Calcium efflux rates could also be increased by the addition of a proton specific uncoupler, FCCP.  相似文献   

13.
Low concentrations of hydrophobic pyridine homologues (1 mM) were found to increase the rate of the Hill reaction in chloroplasts without significantly affecting either the steady-state proton uptake or the rate of proton leakage in the dark. By assuming that the organic base can be bound to two types of independent binding sites in the thylakoid membrane with dissociation constantsK 1 andK 2 respectively, the kinetic data can be treated quantitatively. The values ofK 1 andK 2 determined by the treatment are in the same relative order as the hydrophobicities of the pyridine homologues:K 1=1.16 mM andK 2=54 mM for pyridine; 0.6 and 38 mM for 4-picoline; 0.27 and 31 mM for 4-ethylpyridine, 0.10 and 4.2 mM for 4-t-butylpyridine; 0.08 and 3.2 mM for 4-n-butylpyridine. The rates of oxygen generation and proton uptake by illuminated chloroplasts with either ferricyanide or 1,4-benzoquinone as the electron acceptor were also measured in the presence of various pyridine homologues. Low concentration of pyridine homologues were found to decrease the H+/e ratio. This last observation seems to substantiate an indirect coupling mechanism between electron transport and proton translocation.Abbreviations Chl chlorophyll - CF0 - CF1 the coupling factor complex of chloroplast - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - Tricine N-tris-(hydroxymethyl)methylglycine  相似文献   

14.
15.
In previous work, calcium ions, bound at the lumenal side of the CF0H+ channel, were suggested to keep a H+ flux gating site closed, favoring sequestered domain H+ ions flowing directly into the CF0-CF1 and driving ATP formation by a localized gradient. Treatments expected to displace Ca++ from binding sites had the effect of allowing H+ ions in the sequestered domains to equilibrate with the lumen, and energy coupling showed delocalized characteristics. The existence of such a gating function implies that a closed-gate configuration would block lumenal H+ ions from entering the CF0-CF1 complex. In this work that prediction was tested using as an assay the dark, acid-base jump ATP formation phenomenon driven by H+ ions derived from succinic acid loaded into the lumen.Chlorpromazine, a photoaffinity probe for many proteins having high-affinity Ca++-binding sites, covalently binds to the 8-kDa CF0 subunit in the largest amounts when there is sufficient Ca++ to favor the localized energy coupling mode, i.e., the gate closed configuration. Photoaffinity-bound chlorpromazine blocked 50% or more of the succinate-dependent acid-base jump ATP formation, provided that the ionic conditions during the UV photoaffinity treatment were those which favor a localized energy coupling pattern and a higher level of chlorpromazine labeling of the 8-kDa CF0 subunit. Thylakoids held under conditions favoring a delocalized energy coupling mode and less chlorpromazine labeling of the CF0 subunit did not show any inhibition of acid-base jump ATP formation.Chlorpromazine and calmidazolium, another Ca++-binding site probe, were also shown to block redox-derived H+ initially released into sequestered domains from entering the lumen, at low levels of domain H+ accumulation, but not at higher H+ uptake levels; ie., the closed gate state can be overcome by sufficiently acidic conditions. That is consistent with the observation that the inhibition of lumenal succinate-dependent ATP formation by photoaffinity-attached chlorpromazine can be reversed by lowering the pH of the acid stage from 5.5 to 4.5.The evidence is consistent with the concept that Ca++ bound at the lumenal side of the CF0 H+ channel can block H+ flux from either direction, consistent with the existence of a molecular structure in the CF0 complex having the properties of a gate for H+ flux across the inner boundary of the CF0. Such a gate could control the expression of localized or delocalized energy coupling gradients.  相似文献   

16.
A kinetic analysis of ATP binding to noncatalytic sites of chloroplast coupling factor CF1 was made. The ATP binding proved to be unaffected by reduction of the disulfide bridge of the CF1 -subunit. The first-order equation describing nucleotide binding to noncatalytic sites allowed for two vacant nucleotide binding sites different in their kinetics. As suggested by nucleotide concentration dependence of the rate of nucleotide binding, the tight binding was preceded by rapid reversible binding of nucleotides. Preincubation of CF1 with Mg2+ resulted in a decreased rate of ATP binding. ATP dissociation from noncatalytic sites was described by the first order equation for similar sites with a dissociation rate constant k d (ATP) 10–3 min–1. Noncatalytic sites of CF1 were shown to be not homogeneous. One of them retained the major part of endogenous ADP after precipitation of CF1 with ammonium sulfate. Its two other sites differed in kinetic parameters and affinity for ATP. Anions of phosphate, sulfite, and especially, pyrophosphate inhibited the interaction between ATP and the noncatalytic sites.  相似文献   

17.
At concentrations below 1 mM, hydrophobic pyridine homologues decrease the rate of photophosphorylation and light-stimulated hydrolysis of ATP and light-activated exchange of the tightly bound nucleotides in chloroplasts, but increase the rate of the Hill reaction. Unlike uncoupling agents, the presence of the organic base at such low concentrations decreases the rate of light-dependent leakage and has no effect on the efficiency of two-stage photophosphorylation in broken chloroplasts. By assuming that the organic base is bound to independent equivalent sites in the thylakoid membrane, a simple expression can be derived which relates the observed rates of photophosphorylation and light-stimulated hydrolysis of ATP quantitatively to the concentration of the organic base in solution and gives dissociation equilibrium constants which are on the order of the relative hydrophobicities of the pyridine homologues. A possible mechanistic model for the CF0 · CF1 complex is proposed which could serve as the basis for a unified interpretation of the kinetics of proton translocation in illuminated chloroplasts, the steady-state rate of photophosphorylation, the light-stimulated ATPase activity, and the light-activated exchange of tightly bound adenine nucleotides.Abbreviations AMPPNP adenylylimidodiphosphate - Chl chlorophyll - CF0 · CF1 the coupling factor complex of chloroplasts - DCCD N,N-dicyclohexylcarbodiimide - DTT dithiothreitol - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - TCA trichloroacetic acid - Tricine N-tris-(hydroxymethyl)methylglycine  相似文献   

18.
《BBA》1986,849(1):32-40
Spinach thylakoids have been frozen under a variety of salt / sucrose concentrations to remove varying amounts of peripheral membrane proteins, including the water-soluble part of the coupling factor complex (CF1). This leads to a defined degree of uncoupling by exposing the CF0 proton channel. The ability of thylakoids, subjected to this treatment, to reconstitute light-induced proton pumping, membrane-conformational changes and proton gradient formation when treated with DCCD, an energy transfer inhibitor which interacts with the CF0 proton channel, thus reducing the proton permeability of the membrane, has been investigated. Full reconstitution of proton pumping and ΔpH formation could be obtained in thylakoids in which up to 75% of the coupling factor complex had been removed by the freezing regime. Even under the most severe conditions employed, in which over 80% of the CF1 was removed from the membrane, there was still between 25 and 50% reconstitution of proton pumping. Reconstitution of membrane conformational changes as monitored by 90° scattering changes showed a strong positive correlation to the restoration of proton pumping. Reconstitution of slower, light-induced transmittance changes, in contrast, exhibited a more variable response. Little reconstitution of the slow transmittance changes was found under conditions which removed more than 60–70% of the coupling factor complex.  相似文献   

19.
Summary The proton-driven ATP synthase of chloroplasts is composed of two elements, CF0 and CF1. The membrane bound CF0 conducts protons and the peripheral CF1 interacts with nucleotides. By flash spectrophotometric techniques applied to thylakoid membranes from which about 50% of total CF1 was removed, we have previously determined the protonic (timeaveraged) single-channel conductance of CF0. Being in the order of 1 pS, it was sufficiently large to support the proposed role of CF0 as a low-impedance access for protons to the coupling site in CF0CF1. On the other hand, it was too large to be readily reconciled with current concepts of proton supply to and proton conduction through the channel.We studied the time-averaged single-channel conductance of CF0 under variation of pH, pD, ionic composition, temperature, and water/membrane structure with the following results: (i) CF0 was proton-specific even against a background of 300mm monovalent or 30mm divalent catins. (ii) While the conductance of CF0 was pH/pD-independent in the range from 5.6–8.0, in D2O it was lower by a constant factor of 1.7 than in H2O (iii) Addition of glycerol diminished the conductance and abolished the isotope effect. (iv) The Arrhenius activation energy was 42 kJ/mol and thus intermediate between the ones found for the water-filled pore, gramicidin (30 kJ/mol), and the mobile carrier, valinomycin (65 kJ/mol).The results implied that CF0 is endowed with an extremely proton-specific (107-fold) selectivity filter. Its conductance is very high, and its conduction cycle is not necessarily rate limited by a protolytic reaction. The mechanisms of rapid proton supply to the channel mouth and of proton conduction remained enigmatic.  相似文献   

20.
Vida Vambutas  Walter Bertsch 《BBA》1975,376(1):169-179
Effects of adenylates on chloroplast delayed light emission, at millisecond dark times, are inverse to the previously characterized effects of adenylates on electron transport rates. Either ADP alone or ATP alone increase intensity of delayed light, while ADP plus Pi decrease it. ADP alone requires the presence of an electron acceptor to have this effect on delayed light, but ATP does not.All three adenylate effects are abolished by uncoupling with gramicidin, by partial removal of photophosphorylation coupling factor (CF1) with EDTA, and by antibody to CF1. Readdition of CF1 re-established the adenylate effects in EDTA-stripped membranes. The three adenylate effects are differentially sensitive to pH, and pH differentially affected their abolition by antibody to CF1. The two adenylate effects shown in the absence of Pi are exhibited at lower adenylate concentrations than the ADP plus Pi effect, and are also less sensitive to phloridzin.These results are discussed in terms of probable adenylate effects on membrane-bound chloroplast coupling factor, CF1. At least two ADP binding sites would differ with respect to adenylate concentration for half maximal binding; pH of optimal binding capacity; phloridzin sensitivity; and functional regulation of electron transport, proton uptake, and energy storage within the membrane as measured by delayed light emission. It remains unclear whether the high affinity ADP binding site is identical to a high affinity ATP binding site on CF1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号