首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dipalmitoylphosphatidylcholine (DPPC) dispersed in perdeuterated glycerol was investigated in order to determine the effects on the Raman spectra of hydrocarbon chain interdigitation in gel-phase lipid bilayers. Interdigitated DPPC bilayers formed from glycerol dispersions in the gel phase showed a decrease in the peak height intensity I2850/I2880 ratio, for the symmetric and asymmetric methylene CH stretching modes, respectively, as compared to non-interdigitated DPPC/water gel-phase dispersions. The decrease in this spectral ratio is interpreted as an increase in chain-chain lateral interactions. Spectra recorded in the 700–740 cm?1 CN stretching mode region, the 1000–1200 cm?1 CC stretching mode region and the 1700–1800 cm? CO stretching mode region were identical for both the interdigitated and non-interdigitated hydrocarbon chain systems. At low temperatures the Raman peak height intensity ratios I2935/I2880 were identical for the DPPC/glycerol and DPPC/water dispersions, indicating that this specific index for monitoring bilayer behavior is insensitive to acyl chain interdigitation. The increase, however, in the change of this index at the gel-liquid crystalline phase transition temperature for the DPPC/glycerol dispersions implies a larger entropy of transition in comparison to the non-interdigitated DPPC/water bilayer system.  相似文献   

2.
Using the adsorption theory of chemical kinetics, a new equation concerning the growth of single populations is presented:
dXdt =μcX(1 ?)XXm1?XXm
or in its integral form:
lnXXo?lnXm?XXm?Xo+XmXmXm?XXm?Xoc(t?to)
This equation attempts to explain the relationship between population increment and limiting resources. It can be reduced to either the logistic or exponential equation under two extreme conditions. The new equation has three parameters, Xm, Xm and μc, each of which has ecological significance. XmX′m concerns the efficiency of nutrient utilization by an organism. Its value is between zero and one. With ratios approaching unity, the efficiency is high; lower ratios indicate that population increment is quickly restricted by limiting resources. μc, is a velocity parameter lying between μe, (exponential growth) and μL (logistic growth), and is dependent on the value of solXmX′m. From μc we can predict the time course of population incremental velocity (dXdt), and can observe that it is not symmetrical, unlike that derived from the logistic equation. At XmX′m = 1 the maximum velocity of the population increment predicted from the new equation is twice that of the logistic equation.Population growth in nature seems to support the new equation rather than the logistic equation, and it can be successfully fitted by means of a least square method.  相似文献   

3.
Raman spectroscopic techniques have been used to construct phase diagrams for the binary phospholipid systems, DPPC-d62/DPPE and DPPC/DPPE (DPPC, dipalmitoyl phosphatidylcholine; DPPE, dipalmitoyl phosphatidylethanolamine). For the former, the half-width of the C-2H stretching modes of the deuterated component near 2100 cm?1 serves as an indicator of phospholipid fluidity. The phase behavior is described semi-quantitatively using regular solution theory with the following non-ideality parameters:
ρ0(1)=0.75kcal/mol and ρ0(s)=1.05 kcal/mol
The use of deuterated phospholipids as one component of a binary mixture permits direct evaluation of the conformation of a particular component in the mixture throughout the phase separation region. The approach is demonstrated with the help of a simple model correlating the half-width of the symmetric C-2H stretching mode with the fraction of DPPC-d62 hydrocarbon chains in the liquid crystalline state.The effect of chain perdeuteration on the phase behavior of DPPC with DPPE is evaluated by comparison of the phase diagram of the DPPC-d62/DPPE system with that of DPPC-DPPE. The latter has been constructed previously from both probe and calorimetric techniques, and is created from the Raman spectroscopic data using the I(11301100) ratio to characterize the transgauche population ratio in non-deuterated hydrocarbon chains. A reasonable fit to the phase behavior is obtained using:
ρ0(1)=0.85kcal/mol and ρ0(s)=0.90 kcal/mol
The similarities of the non-ideality parameters in the two phase diagrams indicate that the effect of perdeuteration on the phase behavior of DPPC is not extensive. The use of deuterated phospholipids as essentially unperturbed components of a model membrane system is justified.  相似文献   

4.
Quenching of singlet molecular oxygen (1ΔgO2) by α-tocopherol (I) involves the hydroxy function of the chromanol ring of I. In phosphatidylcholine (PC) uni- and multilamellar vesicles this structural element of I is localized at the interface polar headgroup/hydrophobic core. A dielectric constant of ? ~ 25 was determined for this special region of the PC bilayer. The ratio kQ/kR of rate constants of quenching processes (kQ) and irreversible reactions (kR) of I with 1ΔgO2 increases with decreasing polarity of the solvent. In ethanolic solutions where ? = 25.5, kQ/kR is about 40. Extrapolation of these results to phospholipid bilayers suggests that at the nearness of the ester carbonyl oxygen of the PC fatty acid moieties, α-tocopherol can deactivate approximately 40 1ΔgO2 molecules before being destroyed. It is concluded that in vivo, one may expect to find a higher kQ/kR ratio if the chromanol ring of I hides within the more hydrophobic interiors of the membrane surface peptides.  相似文献   

5.
The intrinsic viscosities, weight-average molecular weights (M?w), and radii of gyration [(R2g)12≈] of Streptococcus salivarius levan in various solvents were respectively obtained from viscosity and light-scattering measurements. The data showed that the levan in water is not aggregated by hydrogen bonds, and that the values of both the refractive index and (R2g)12 are lower in water than in aqueous solutions of urea. Urea may break intramolecular hydrogen-bonds, e.g., between branches, allowing the molecule to expand.  相似文献   

6.
Differential polarized phase fluorometry was used to quantify the rotational rate (R) and limiting anisotropy (r) of the membrane probe diphenylhexatriene (DPH) in solvents and lipid vesicles exposed to hydrostatic pressures ranging from 1 bar to 2 kbar. These measurements reveal the effect of pressure on the phase-transition temperatures of the phosphatidylcholine vesicles, and the effects of pressure on order parameter of the acyl side-chain region of the membranes, the latter as indicated by r. In addition to the well-known elevation of the transition temperature (Tc) with pressure, our results demonstrate that increased pressure restores the order of the bilayers to that representative of temperatures below the transition temperature. We also found that solvents which allowed free isotropic rotation of DPH at 1 bar no longer allowed free rotation when sufficiently compressed; moreover, the apparent DPH rotational rate increased with r. Pressure studies using both DPH and the charged DPH analogue, trimethylammonium DPH (TMA-DPH) indicated that the Tc of dipalmitoylphosphatidylcholine vesicles increased 23 K/kbar and an apparent volume change of 0.036 ml/mol lipid at the phase transition. Assuming, as has been proposed, that TMA-DPH is localized near the glycerol backbone region of the bilayers, these results indicate a similar temperature- and pressure-dependent phase transition in this region and the acyl side-chain region of the membrane.  相似文献   

7.
An aqueous dispersion of fully hydrated bovine sphingomyelin was studied using 14N-NMR spectroscopy. Spectra were obtained as a function of temperature over the range 15–80°C, in both the liquid crystal and gel phases. In the liquid crystal phase, powder pattern lineshapes were obtained, whose quadrupolar splitting slowly decreases with increasing temperature. The spectra are increasingly broadened as the temperature is lowered through the phase transition into the gel phase. The linewidths and the second moments of these spectra indicate that the onset of a broad phase transition occurs at approx. 35°C, in agreement with previous calorimetric and 31P-NMR measurements. There is no evidence from the lineshapes for an hexagonal phase in this system, and this conclusion is supported by X-ray diffraction measurements carried out on aqueous dispersions of sphingomyelin in both phases. Assuming that the static nitrogen quadrupole coupling constant is the same for both sphingomyelin and dipalmitoyl-l-α-phosphatidylcholine (DPPC), the decrease observed in the quadrupolar splitting of sphingomyelin compared to that of DPPC indicates that the orientational order of the choline headgroup in liquid crystalline sphingomyelin is not the same as that of its counterpart in DPPC. Preliminary relaxation time measurements of T1 and T2 are presented which suggest that there are also dynamic differences between sphingomyelin and DPPC in the choline headgroup.  相似文献   

8.
The dielectric dispersion in the MHz range of the zwitterionic dipolar phosphocholine head groups has been measured from 0–70°C for various mixtures of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol. The abrupt change in the derived relaxation frequency f2 observed for pure DPPC at the gel-to-liquid crystalline phase transition at 42°C reduces to a more gradual increase of frequency with temperature as the cholesterol content is increased. In general the presence of cholesterol increases the DPPC head group mobility due to its spacing effect. Below 42°C no sudden changes in f2 are found at 20 or 33 mol% cholesterol, where phase boundaries have been suggested from other methods. Above 42°C, however, a decrease in f2 at cholesterol contents up to 20–30 mol% is found. This is thought to be partly due to an additional restricting effect of the cholesterol on the number of hydrocarbon chain conformations and consequently on the area occupied by the DPPC molecules.  相似文献   

9.
An optimal economic harvesting policy, which maximizes the present value of an animal population, capable of renewing itself, is discussed. It is assumed that, unhindered, the successive population levels, Xn, form a Markov chain, with transitions
Xn+1=?(Xn) + ?n?(Xn)
, where f is the recruitment function, and {?n} is an iid sequence of random shocks. When a positive set-up cost is present an optimal policy is of the (S,s) type. The optimal population level is compared with that of an equivalent deterministic model. Bioeconomic conditions, which imply the optimality of conservation, or extinction are investigated.  相似文献   

10.
A group of n susceptible individuals exposed to a contagious disease isconsidered. It is assumed that at each point in time one or more susceptible individuals can contract the disease. The progress of this simple batch epidemic is modeled by a stochastic process Xn(t), t∈[0, ∞), representing the number of infectiveindividuals at time t. In this paper our analysis is restricted to simple batch epidemics with transition rates given by 2Xn(t){n ?Xn(t) +Xn(0)}]12, t∈[0, ∞), α∈(0, ∞). This class of simple batch epidemics generalizes a model used and motivated by McNeil (1972) to describe simple epidemic situations. It is shown for this class of simple batch epidemics, that Xn(t), with suitable standardization, converges in distribution as n→∞ to a normal random variable for all t∈(0, t0), and t0 is evaluated.  相似文献   

11.
The reactivities of anionic nitroalkanes with 2-nitropropane dioxygenase of Hansenula mrakii, glucose oxidase of Aspergillus niger, and mammalian d-amino acid oxidase have been compared kinetically. 2-Nitropropane dioxygenase is 1200 and 4800 times more active with anionic 2-nitropropane than d-amino acid oxidase and glucose oxidase, respectively. The apparent Km values for anionic 2-nitropropane are as follows: 2-nitropropane dioxygenase, 1.61 mm; glucose oxidase, 16.7 mm; and d-amino acid oxidase, 11.1 mm. Anionic 2-nitropropane undergoes an oxygenase reaction with 2-nitropropane dioxygenase and glucose oxidase, and an oxidase reaction with d-amino acid oxidase. In contrast, anionic nitroethane is oxidized through an oxygenase reaction by 2-nitropropane dioxygenase, and through an oxidase reaction by glucose oxidase. All nitroalkane oxidations by these three flavoenzymes are inhibited by Cu and Zn-superoxide dismutase of bovine blood, Mn-superoxide dismutases of bacilli, Fe-superoxide dismutase of Serratia marcescens, and other O2? scavengers such as cytochrome c and NADH, but are not affected by hydroxyl radical scavengers such as mannitol. None of the O2? scavengers tested affected the inherent substrate oxidation by glucose oxidase and d-amino acid oxidase. Furthermore, the generation of O2? in the oxidation of anionic 2-nitropropane by 2-nitropropane dioxygenase was revealed by ESR spectroscoy. The ESR spectrum of anionic 2-nitropropane plus 2-nitropropane dioxygenase shows signals at g1 = 2.007 and g11 = 2.051, which are characteristic of O2?. The O2? generated is a catalytically essential intermediate in the oxidation of anionic nitroalkanes by the enzymes.  相似文献   

12.
Three chlorophyll-protein complexes of a Chroomonas species (Cryptophyceae) have been separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis. The two bands at 100 and 42 kDa are Complex I (CP I) and Complex IV (CP IV), the ubiquitous chlorophyll a-proteins associated with Photosystems I and II, respectively. The third 55 kDa band, which had two peptide subunits (24 and 20 kDa), contained both chlorophyll a and chlorophyll c2 in a molar ratio of 1.4 chlorophyll a to 1 chlorophyll c2 (chlorophyll achlorophyll c2 ratio in whole cells = 4). A chlorophyll ac2 fraction with similar spectral and electrophoretic properties was isolated by digitonin-sucrose density gradient centrifugation. This fraction had no photochemical activity and contained only a single carotenoid species with absorbance maxima in methanol at 424, 448 and 476 nm. Efficient energy transfer from chlorophyll c2 to chlorophyll a occurred in the complex.  相似文献   

13.
Perturbations induced by melittin on the thermotropism of dimyristoyl-, dipalmitoyl-, distearoylphosphatidylcholine and natural sphingomyelin are investigated and rationalized from data obtained by fluorescence polarization, differential scanning calorimetry and Raman spectroscopy. Depending on the technique and / or experimental conditions used, the observed effects differ at the same lipid to protein molar ratio, due to partial binding of melittin. The binding is more efficient for tetrameric than for monomeric melittin, but in both cases its affinity is weaker for phosphatidylcholine dispersions in the gel phase than for sonicated vesicles. For temperatures T ? Tm efficient binding occurs whatever the initial state of the lipids is. One can summarize the effects induced by melittin on the transition temperature as follows: (i) No upward shift is observed on synthetic phosphatidylcholines when lipid degradation is avoided. This is achieved by using highly purified melittin, phospholipase inhibitors, and / or non-hydrolysable lipids. (ii) Melittin monomer does not change Tm. (iii) When melittin tetramer is stabilized, it decreases Tm by 10–15 deg. C. The transition broadens, and is finally abolished for Ri ? 2. Very similar results are found for natural sphingomyelin. Fluorescence polarization indicates similar changes in order and dynamics of the acyl chains for all lipid studied. For T ? Tm, fluorescence and Raman show that melittin decreases the amount of CH2 groups in ‘trans’ conformation and the intermolecular order of the chains. According to fluorescence data, there is an increase of the rigid-body orientational order at T ? Tm, while from Raman the positional intermolecular order decreases without significant change in the CH2 groups ‘trans’/‘gauche’ ratio.  相似文献   

14.
Synthesis and phase transition characteristics of aqueous dispersions of the homologous (12 : 0, 14 : 0, 16 : 0) diphosphatidylglycerols (cardiolipins) and phosphatidyldiacylglycerols are reported. Electron microscopy of the negatively stained aqueous dispersions reveals a characteristic lamellar structure suggesting that these phospholipid molecules are organized as bilayers in the aqueous dispersions. The phase transition temperature (Tm) and the enthalpy of transition (ΔH) increase monotonically with chain length in the cardiolipin and phosphatidyldiacylglycerol series; Tm for phosphatidyldiacylglycerol is higher than that for cardiolipin of the same chain-length. The transition temperatures for the enantiomeric sn-3,3- and sn-1,1-phosphatidyldiacylglycerol and for the diastereomeric, meso-sn-1,3-phosphatidyldiacylglycerol are approximately the same. The molar enthalpy for the transition of cardiolipin-NH4+ bilayers is approximately twice the value for the phosphatidylcholines of the same chain length, i.e., the molar enthalpy per acyl chain is approximately the same in the two systems. The transition temperatures for metal ion salts of C1 6-cardiolipin exhibit a biphasic dependence upon the unhydrated ionic radii, i.e. the highest Tm is observed for Ca2+- cardiolipin and decreases for the salts of ions with smaller and larger ionic radii than that of Ca2+. The lowest Tm is observed for Rb+-cardiolipin. Monovalent metal salts of cardiolipin exhibit two phase transitions. This effect may result from different conformational packing of the four acyl chains due to differences in metal-phosphate binding.  相似文献   

15.
The changes in polymer-solvent interactions that occur when native calf thymus DNA is dialyzed against Na2SO4 solutions of a given ionic strength and buffer concentration but of varying concentrations in methylmercuric hydroxide have been investigated with the help of solution density measurements at 25 °C and pH 6.8–7.0. From measurements executed under equilibrium dialysis conditions at the three salt levels 5 mm, 0.05 m, and 0.5 m Na2SO4 (m refers to molality) and in the presence of 5 mm cacodylic acid buffer, the density increments (???c2)μ0 for native calf thymus DNA were determined as a function of CH3HgOH concentration. (???c2)μ0 was found not to vary with organomercurial concentration, irrespective of the concentration of supporting electrolyte, until a certain CH3HgOH concentration level has been reached, viz., pM1 ? 3.5 (pM1 = ?log mCH3HgOH), beyond which (???c2)μ0 increases strongly with increasing concentration of CH3HgOH. As is shown by optical melting, (???c2)μ0 becomes a function of organomercurial concentration the moment DNA undergoes denaturation brought about by the complexing of CH3HgOH with the various N-binding sites of the base residues in the DNA double helix.Polymer-solvent interactions, expressed in terms of preferential water interactions (“net hydration”) and preferential salt interactions (“salt solvation”), were derived from the (???c2)μ0 data in combination with data obtained on the preferential interaction of CH3HgOH with denatured DNA and data on the partial specific volumes of all major solution components, gathered from density measurements on solutions with fixed concentrations of diffusible components. Evidence is presented which shows that denaturation in general decreases the net hydration while salt becomes preferentially associated with the polyelectrolyte. This process is further amplified by the interaction of CH3HgOH with denatured DNA: Methylmercurated DNA alters the redistribution of diffusible components at dialysis equilibrium to such an extent that in a formal sense large amounts of water are rejected from the immediate vicinity of the polymer. The molecular implications of these findings are explored. The results are further discussed in the light of previous findings where the methylmercury-induced denaturation of DNA had been studied with the help of buoyant density measurements in a Cs2SO4 density gradient and by velocity-sedimentation in a variety of sulfate media.  相似文献   

16.
The hydration properties of Escherichia coli lipids (phosphatidylglycerol, phosphatidylethanolamine) and synthetic 1,2-dioleoyl-sn-glycero-3-phosphocholine in H2O/2H2O mixtures (9:1, v/v) were investigated with 2H-NMR. Comparison of the 2H2O spin lattice relaxation time (T1) as a function of the water content revealed a remarkable quantitative similarity of all three lipid-H2O systems. Two distinct hydration regions could be discerned in the T1 relaxation time profile. (1) A minimum of 11–16 water molecules was needed to form a primary hydration shell, characterized by an average relaxation time of T1 ≈ 90 ms. (2) Additional water was found to be in exchange with the primary hydration shell. The exchange process could be described in terms of a two-site exchange model, assuming rapid exchange between bulk water with T1 = 500 ms and hydration water with T1 = 80–120 ms. Analysis of the linewidth and the residual quadrupole splitting (at low water content) confirmed the size of the primary hydration layer. However, each lipid-water system exhibited a somewhat different linewidth behavior, and a detailed molecular interpretation appeared to be preposterous.  相似文献   

17.
Female North American house dust mites were found to exchange water with the ambient air from two compartments. At humidities above the critical equilibrium activity (CEA), transpiration out of a single large compartment was observed using HTO as a tracer for water. Total sorption into this compartment was also observed by following changes in the specific radioactivity. The sorption data required that an active process or pump be present. The water in this pump is the second compartment above the CEA. Below the CEA the large compartment could be identified as a compartment characterized by a small transpiration rate constant. The pump below the CEA becomes a rapidly transpiring fast compartment. By separating the water pool into two compartments, it was possible to relate av to k and m?S. The major effect of av on k was related to its effect on the permeability of the cuticle. The influence of av on m?S was different for active and passive sorption. Above the CEA the pump operated at full capacity and active m?S was directly proportional to av. Passive sorption was influenced by av in two ways. The driving force for m?S was further reduced below saturation by the effect of av on the permeability of the exchange surface.  相似文献   

18.
Cationic and uncharged forms of a tertiary amine local anesthetic are reported to have different properties and potencies as nerve blocking agents. However, the relative capacities of each form of the local anesthetic to perturb the properties of different model membrane systems is unknown. For this reason we have studied the effects of uncharged lidocaine (high pH) and its quaternary amine analogue (W49091) on the phase transition properties of DMPS, DPPE and DPPC liposomes using high-sensitivity differential scanning calorimetry. We report that neutral lidocaine interacts similarly with all three phospholipids. This interaction results in a decrease in the temperature of the gel å liquid crystalline phase transition (Tm), an increase in the enthalpy of the transition (ΔH), and a slight decrease in the cooperativity of melting. Quaternary lidocaine (W49091), on the other hand, interacts significantly with only DMPS; the result being again a decrease in the temperature of DMPS melting, an increase in ΔH, and a slight decrease in the cooperativity of the phase transition. These results are interpreted to indicate that uncharged lidocaine enters the membrane during the DPPE and DPPC phase transitions. In the case of DMPS, an influx of both charged forms of lidocaine must occur at Tm. These anesthetic fluxes at the lipid's phase transition are suggested to be responsible for the observed elevated enthalpies of the respective transitions. The observation that the cationic form of lidocaine does not significantly modify the behavior of DPPC and DPPE liposomes suggests that these lipids are not important components of the anesthetic's site in nerve membranes. However, the dramatic perturbation of the properties of DMPS by W49091 suggests that phosphatidylserine may comprise part of this inhibitory site.  相似文献   

19.
20.
The α-chymotrypsin-catalyzed hydrolysis rates of p-nitrophenyl cyclopentane-carboxylate (I), p-nitrophenyl indan-2-carboxylate (II), and p-nitrophenyl spiro-[4.4]nonane-2-carboxylate (III) were measured at pH 8.1 in 20% methanol. After correction for variations in reactivity owing to stereoelectronic effects inherent to the substrates, the deacylation rate constants (kc)n of I and II are not significantly different. In (kcKm)n II is 50 times more reactive than I, which demonstrates that the aromatic ring of the former substrate contributes significantly to its reactivity. The nearly equal reactivities of II and III indicate that the enzyme is rather insensitive to the geometry of the nonester-bearing ring of these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号