首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Roger C. Prince  John M. Olson 《BBA》1976,423(2):357-362
We have examined the bacteriochlorophyll reaction-center complex of Chlorobium limicola f. thiosulfatophilum, strain Tassajara. Our results indicate that the midpoint potential of the primary electron donor bacteriochlorophyll of the reaction center is +250 mV at pH 6.8, while that of cytochrome c-553 is +165 mV. There are two cytochrome c-553 hemes per reaction center, and the light-induced oxidation of each is biphasic (t12 of < 5 μs and ≈ 50 μs). We believe that this indicates a two state equilibrium with each cytochrome heme being either close to, or a little removed from, the reaction-center bacteriochlorophyll.We have also titrated the primary electron acceptor of the reaction center. Its equilibrium midpoint potential at pH 6.8 is below ?450 mV. This is very much lower than the previous estimate for green bacteria, and also substantially lower than values obtained for purple bacteria. Such a low-potential primary acceptor would be thermodynamically capable of direct reduction of NAD+ via ferredoxin in a manner analagous to photosystem I in chloroplasts and blue-green algae.  相似文献   

2.
Sulfide is both an inhibitor and a slow reductant of oxidized cytochrome c oxidase. When the enzyme is exposed to sulfide for short times (one minute or less) and frozen, the resultant electron paramagnetic resonance (EPR) signals show clearly: low spin heme a, low spin heme a3, the usual “EPR detectable” Cu2+ signal (g = 2.17, g = 2.03), and a new Cu2+ signal superimposed on the same region, with (g ~ 2.19, g = 2.05). This new signal presumably arises because the antiferromagnetic coupling postulated to exist between the iron atom of heme a3 and this copper is disrupted when heme a3 is driven to a low spin state by sulfide. The implications of this result with respect to models of the O2-binding site and redox geometry of oxidase are briefly discussed.  相似文献   

3.
Mammalian cytochrome c can effectively replace bacterial cytochrome c2 as the electron donor to the bacterial photosynthetic reaction center in either the natural chromatophore or a reconstituted reaction center/phospholipid membrane. In this paper, the reconstituted membrane was used to describe the nature of cytochrome c binding to the reaction center, the location of bound cytochrome c in the membrane profile and the perturbation of the reaction center and phospholipid profile structures induced by cytochrome c binding. These structural studies utilized the combined techniques of X-ray and neutron diffraction.  相似文献   

4.
Peter R. Rich  Peter Heathcote 《BBA》1983,723(2):332-340
(i) Purified bovine heart mitochondrial cytochrome b-c1 complex (ubiquinone-cytochrome c oxidoreductase) and photosynthetic reaction centres isolated from Rhodopseudomonas sphaeroides strain R-26 have been incorporated into lipid vesicles. In the presence of cytochrome c and ubiquinone-2, light activation caused a cyclic electron transfer involving both components. (2) Since cytochrome c is added outside the vesicles, it is both reduced by the cytochrome b-c1 complex and oxidised by the reaction centre on the outside of the vesicles. Ubiquinone-2, however, is reduced by the reaction centres at a site in contact with the inside of the vesicles, but the reduced form, ubiquinol-2, is oxidised by the cytochrome b-c1 complex at a site in contact with the outer aqueous phase. (3) In the presence of valinomycin plus K+, initiation of cyclic electron flow causes protons to move from inside the vesicles to the outer medium and the H+2e? ratio was calculated to be close to 4.  相似文献   

5.
The Rieske iron-sulfur center in the photosynthetic bacterium Rhodopseudomonas sphaeroides appears to be the direct electron donor to ferricytochrome c2, reducing the cytochrome on a submillisecond timescale which is slower than the rapid phase of cytochrome oxidation (t12 3–5 μs). The reduction of the ferricytochrome by the Rieske center is inhibited by 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT) but not by antimycin. The slower (1–2 ms) antimycin-sensitive phase of ferricytochrome c2 reduction, attributed to a specific ubiquinone-10 molecule (Qz), and the associated carotenoid spectral response to membrane potential formation are also inhibited by UHDBT. Since the light-induced oxidation of the Rieske center is only observed in the presence of antimycin, it seems likely that the reduced form of Qz (QzH2) reduces the Rieske center in an antimycin-sensitive reaction. From the extent of the UHDBT-sensitive ferricytochrome c2 reduction we estimate that there are 0.7 Rieske iron-sulfur centers per reaction center.UHDBT shifts the EPR derivative absorption spectrum of the Rieske center from gy 1.90 to gy 1.89, and shifts the Em,7 from 280 to 350 mV. While this latter shift may account for the subsequent failure of the iron-sulfur center to reduce ferricytochrome c2, it is not clear how this can explain the other effects of the inhibitor, such as the prevention of cytochrome b reduction and the elimination of the uptake of H+II; these may reflect additional sites of action of the inhibitor.  相似文献   

6.
Ferricytochrome c can be reduced in a photochemical reaction by excited state phenothiazine. This reaction is observed between phenothiazine which is solubilized by phospholipid artificial membranes and cytochrome c which is adsorbed to the membrane surface. Under conditions when cytochrome c is not bound to the phospholipid, the rate of reduction by phenothiazine is greatly reduced. The phosphorescence of phenothiazine is quenched in the presence of cytochrome c, implying that the excited triplet state interacts with cytochrome c. Oxygen inhibits the reaction since possibly, as a paramagnetic species, it increases intersystem crossing of the excited states of phenothiazine. On the basis of molecular models the proximity between the iron of ferricytochrome c and phenothiazine is estimated to be over 20 Å.  相似文献   

7.
《BBA》1985,806(2):320-330
Two membrane-associated cytochromes, cytochrome cm-553 and cytochrome cm-552, were derived from Nitrosomonas europaea. The major c-type cytochrome, cytochrome cm-553, accounted for 92% of the c heme found in the membrane. It had absorption maxima at 410 nm in the oxidized form and at 417, 523 and 553 nm in the dithionite reduced form. Cytochrome cm-552 possessed absorption maxima at 409 nm in the oxidized form, at 421, 522 and 552 in the dithionite reduced form, and at 418 in the dithionite reduced plus CO form. The concentration and cellular distribution of the two c-type membrane cytochromes, hydroxylamine oxidoreductase and cytochromes c-552, c-554, and a were determined. Over 95% of the soluble cytochromes (hydroxylamine oxidoreductase cytochromes and c-552 and c-554) were periplasmic, whereas cytochrome cm-553, cytochrome cm-552 and cytochrome a were associated with the cell membrane. The outer membrane and cytoplasm were devoid of cytochromes. The extracytoplasmic location of the proton-yielding hydroxylamine oxidizing system (NH2OH ™ HNO + 2H+ + 2e) may contribute to an energy-linked proton gradient. The heme concentrations of hydroxylamine oxidoreductase and cytochromes c-552, c-554, cm-553, cm-552 and a were approx. 2.4, 1.2, 0.3, 1.3, 0.1 and 1.1 nmol/mg cell protein, respectively. The corresponding molar ratios of heme were 22:11:2.9:12:1.0:10. The enzyme or cytochrome concentrations for hydroxylamine oxidoreductase and cytochromes c-552, c-554, cm-553, cm-552 and a were approx. 0.13, 1.05, 0.09, 0.63, 0.055 and 0.56 nmol/mg cell protein, respectively. The corresponding molar ratios were 0.24:2.2:0.16:1.2:0.1:1.0.  相似文献   

8.
A cytochrome c - cytochrome c oxidase complex containing 0.8–1.0 moles of cytochrome c per mole of cytochrome c oxidase (heme a + a3) was isolated as described by Ferguson-Miller, S., Brautigan, D.L., and Margoliash E., J. Biol. Chem. 251, 1104 (1976). This complex was reacted with dithiobissuccinimidyl propionate, an 11 Å bridging bifunctional reagent, and the cross-linked products obtained were analyzed by two dimensional gel electrophoresis. Cytochrome c was cross-linked to subunit II of cytochrome c oxidase. Other cross-linked products were formed involving different subunits of cytochrome c oxidase. These included I+V, II+V, III+V, V+VII, IV+VI and IV+VII. Experiments are also described using N,N′-bis(3-succinimidyloxycarbonylpropyl) tartarate. The major product formed with this 18 Å bridging bifunctional reagent was a pair containing II+VI.  相似文献   

9.
Oxidized cytochrome c6 from Anabaena PCC 7119 was studied by electron spin echo envelope modulation spectroscopy. Hyperfine couplings of the unpaired electron with several nuclei were detected, in particular those of the nitrogens bound to the iron atom. Combining the experimental information here presented and previous continuous wave-electron paramagnetic resonance and electron nuclear double resonance results, some details on the electronic structure of the heme center in the protein are obtained. These results are discussed on the basis of a molecular model that considers one unpaired electron localized mainly in the iron d orbitals and propagation of the spin density within the heme center via spin polarization of the nitrogen σ-orbitals. The coexistence of two heme forms at physiological pH values in this c-type cytochrome is also discussed taking into account the experimental evidence.  相似文献   

10.
Changes in the absorption spectrum induced by 10-μs flashes and continuous light of various intensities were studied in whole cells of Chromatium vinosum.This paper describes the role and function of a soluble c-type cytochrome, c-551, which was surprisingly found to act in many ways similar to the cytochrome c-420 in Rhodospirillum rubrum, described in a previous paper [1].After the photooxidation of the membrane bound high potential cytochrome c-555 by a 10-μs flash, (the low potential cytochrome c-552 was kept permanently in the oxidized state) the oxidation of c-551 is observed (t12 = 0.3 ms). From a careful analysis of the absorbance difference spectrum and the kinetics it is concluded that there is approximately 0.6–0.7 c-551 per reaction center and that essentially all the c+-555 is reduced via the cytochrome c-551. The oxidized-reduced difference spectrum of c-551 shows peaks at 551 and 421.5 nm. The reduction of c+-551 following the flash-induced oxidation is strongly inhibited by HOQNO, but only slightly by antimycin A.Cytochrome c-551 reduces only the oxidized high potential cytochrome c-555, which is probably located on the outside of the membrane, on the opposite side of the primary acceptor. The low potential cytochrome c-552 does not show any detectable interaction with cytochrome c-551. After the cells have been sonicated, no c-551 is photooxidized and at least part of the cytochrome occurs in the solution.Analysis of the reduction kinetics of c+-551 in the absence and presence of external donors suggests that c+-551 is partly reduced via a cyclic pathway, which is blocked by addition of o-phenanthroline, and partly via a non-cyclic pathway. The non-cyclic reduction rate of c+-551 (k = 6 s?1) is increased approximately 5–10 times upon thiosulphate addition, suggesting a role for c-551 between the final donor pool and the oxidized membrane bound c-type cytochromes.  相似文献   

11.
Mixtures of cytochrome c oxidase and cytochrome c have been titrated by coulometrically generated reductant, methyl viologen radical cation, and physiological oxidant, O2. Charge distribution among the heme components in mixtures of these two redox enzymes has been evaluated by monitoring the absorbance changes at 605 and 550 nm. Differences in the pathway of the electron transfer process during a reduction cycle as compared to an oxidation cycle are indicated by variations found in the absorbance behavior of the heme components during successive reductive and oxidative titrations. It is apparent that the potential of the cytochrome a heme is dependent upon whether oxidation or reduction is occurring.  相似文献   

12.
The addition of formate to oxidized cytochrome c oxidase (ferrocytochrome c: oxygen oxidoreductase, EC 1.9.3.1) causes the appearance of a high spin heme signal at g = 6 and a splitting of g = 3 signal to g = 2.98 and 3.07. When formate-cytochrome c oxidase is reduced, the g = 2.98 signal decreases significantly. The spectrophotometric studies showed that formate is a specific ligand to cytochrome a3. Data suggest that binding of formate to oxidized cytochrome c oxidase produces a ligand-a3 interaction leading to the splitting of g = 3 signal hitherto considered as due to cytochrome a. Thus both cytochrome a and a3 contribute to the resonance of g = 3 signal of cytochrome c oxidase.  相似文献   

13.
Quenching of 12-(9-anthroyl) stearic acid (AS) fluorescence by cytochrome c occurs through an energy-transfer mechanism and can be used to measure the binding of the cytochrome to artificial and mitochondrial membranes. The quenching of AS3 fluorescence is biphasic (t12 below 25 msec and above 500 msec) and its extent diminishes at high salt concentration or at high pH and increases in the presence of negatively charged lipids.Addition of cytochrome c to cytochrome c-depleted mitochondria results in binding of the cytochrome to the membrane and quenching of AS fluorescence. The affinity of oxidized cytochrome c for cytochrome c-depleted mitochondria is 1.8 × 106m, while the affinity constant for reduced cytochrome c is 0.5 × 106m. The lower affinity of the reduced cytochrome c for mitochondrial membranes is in accordance with midpoint potential differences between the bound and free forms.  相似文献   

14.
15.
Peter Nicholls 《BBA》1976,430(1):30-45
1. Beef heart mitochondria have a cytochrome c1 : c : aa3 ratio of 0.65 : 1.0 : 1.0 as isolated; Keilin-Hartree submitochondrial particles have a ratio of 0.65 : 0.4 : 1.0. More than 50% of the submitochondrial particle membrane is in the ‘inverted’ configuration, shielding the catalytically active cytochrome c. The ‘endogenous’ cytochrome c of particles turns over at a maximal rate between 450 and 550 s?1 during the oxidation of succinate or ascorbate plus TMPD; the maximal turnover rate for cytochrome c in mitochondria is 300–400 s?1, at 28° – 30°C, pH 7.4.2. Ascorbate plus N,N,N′,N′-tetramethyl-p-phenylene diamine added to antimycin-treated particles induces anomalous absorption increases between 555 and 565 nm during the aerobic steady state, which disappear upon anaerobiosis; succinate addition abolishes this cycle and permits the partial resolution of cytochrome c1 and cytochrome c steady states at 552.5–547 nm and 550–556.5 nm, respectively.3. Cytochrome c1 is rather more reduced than cytochrome c during the oxidation of succinate and of ascorbate+N,N,N′,N′-tetramethyl-p-phenylene diamine in both mitochondria and submitochondrial particles; a near equilibrium condition exists between cytochromes c1 and c in the aerobic steady state, with a rate constant for the c1c reduction step greater than 103 s?1.4. The greater apparent response of the caa3 electron transfer step to salts, the hyperbolic inhibition of succinate oxidation by azide and cyanide, and the kinetic behaviour of the succinate-cytochrome c reductase system, are all explicable in terms of a near-equilibrium condition prevailing at the c1c step. Endogenous cytochrome c of mitochondria and submitochondrial particles is apparently largely bound to cytochrome aa3 units in situ. Cytochrome c1 can either reduce the cytochrome c-cytochrome aa3 complex directly, or requires only a small extra amount of cytochrome c to carry the full electron transfer flux.  相似文献   

16.
Cytochrome oxidase from an extreme thermophile. Thermus thermophilus HB8   总被引:5,自引:0,他引:5  
The cytochrome oxidase (EC 1.9.3.1) of Thermusthermophilus HB8 was isolated from the membrane fraction, and was highly purified. The oxidase contained heme a and heme c as the prosthetic groups. The purified preparation showed a single band in polyacrylamide gel electrophoresis, and three major polypeptides with apparent molecular weights of 52,000, 37,000 and 29,000 were observed in the presence of sodium dodecyl sulfate. The enzyme reacted rapidly with T. thermophilus cytochrome c-552. The oxidation of T. thermophilus cytochrome c-555,549 by the enzyme was very slow, and was stimulated by the addition of cytochrome c-552. The enzyme was highly stable to heat.  相似文献   

17.
Magnetic circular dichroism (MCD) spectra of Pseudomonas aeruginosa cytochrome oxidase are reported over the spectral range of 350–700 nm for the oxidized, ascorbate-reduced, dithionite-reduced and reduced carbon monoxide forms. The spectra of all forms examined can be interpreted as the simple sum of the individual heme c and heme d1 contributions without invoking “heme-heme interaction.” In particular and contrary to a recent report [Orii, Shimada, Nozawa, and Hatano, this Journal 76, 983 (1977)] no effect of ligand binding to ferrous heme d1 was observed in the MCD spectrum of the heme c component. It seems likely that the previous findings were the result of incomplete reduction of the enzyme in the absence of stabilizing ligands.  相似文献   

18.
Thyrotoxicosis can induce increases in the concentrations of the cytochromes of the inner mitochondrial membrane in rat liver. The purpose of this study was to determine whether the increase in hepatic cytochrome c concentration in thyrotoxic rats is maintained by an increase in the rate of synthesis, a decrease in the rate of degradation, or a combination of the two. The turnover of cytochrome c labeled with δ-amino [14C]levulinate was measured in the livers of thyrotoxic rats that were in steady state with respect to liver cytochrome c concentration, liver weight, and body weight. Cytochrome c concentration was increased 3.4-fold in the livers of the thyrotoxic animals. The t12 of liver cytochrome c was 3.7 days in the thyrotoxic and 5.7 days in euthyroid animals. It was calculated that the 3.4-fold increase in cytochrome c concentration was maintained, in the face of a 63% increase in kd, by a 5.5-fold increase in synthesis rate.  相似文献   

19.
The repetitive, reversible equilibrium redox cycling of cytochrome c, cytochrome c oxidase, or mixtures thereof has been made possible by the use of the oxidant, ferricinium ion. This ion is electrochemically generated by the use of non-ionic detergent solubilized ferrocene which is apparently incorporated as micelles and readily electron transfers with an electrode. The ferricinium-ferrocene couple equilibrates rapidly with these heme proteins. Electrochemically generated benzylviologen radical cations are used as the reductant. The EO′ values for cytochrome c oxidase at pH 7.0 are 209 ± 15 mv (2e?) and 340 ± 15 mv (2e?).  相似文献   

20.
Various hemoglobin derivatives have been labeled at the Cys-β93 residue with a bulky and “strongly immobilized” nitroxide maleimide (I) and a smaller, more flexible and “weakly immobilized” nitroxide iodoacetamide (II) and crystallized. The angular dependence of the paramagnetic resonance of the spin-label was measured for the ab, ac1 and bc1 planes at 298 K and 77 K for spin-labeled crystals of Oxyhemoglobin, methemoglobin fluoride, and methemoglobin azide. In the case of the methemoglobin crystals, the angular variation of the heme resonance was also monitored at 77 K. From the hyperfine splitting data, the spin-label I was found to assume specific orientations at both temperatures with some motional narrowing at 298 K. Spin-label II is specifically oriented only at room temperature but is frozen at 77 K in random orientations. Oxyhemoglobin labeled with I (I-HbO22) has the most prominent spin-label orientation (zb, xa) and the less abundant spin-labels with (zb ± 15 °) (Ohnishi et al., 1966). The corresponding spin-label orientations for I-Hb+ F? are (z∥a, x∥c1) and (z∥c1, x∥a). Crystals of I-Hb+ N?3 have spin-labels oriented along angular directions similar, but not identical to those of I-Hb+F?. Therefore, there are probably significant peptide segmental displacements when HbO2 is oxidized to methemoglobins. At 25 °C II-Hb+ N?3 has spin-label orientations not too different from those in I-Hb+ N?3, whereas in HbO2 the two spin-labels show significant differences in their orientations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号