首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A gramicidin A derivative with a polyether linkage between both ethanolamine termini was synthesized and its ion channel properties were studied. The compound showed a duplication in the state of conductance for alkali cations in thick DOPC bilayer membranes, which is interpreted as the occurrence of twin-channels. In thinner DMPC membranes mono-channels were dominant. The influence of hydrophobic coupling on the mono channel/twin channel equilibrium is discussed.  相似文献   

2.
We describe an electrostatic model of the gramicidin A channel that allows protein atoms to move in response to the presence of a permeating ion. To do this, molecular dynamics simulations are carried out with a permeating ion at various positions within the channel. Then an ensemble of atomic coordinates taken from the simulations are used to construct energy profiles using macroscopic electrostatic calculations. The energy profiles constructed are compared to experimentally-determined conductance data by inserting them into Brownian dynamics simulations. We find that the energy landscape seen by a permeating ion changes significantly when we allow the protein atoms to move rather than using a rigid protein structure. However, the model developed cannot satisfactorily reproduce all of the experimental data. Thus, even when protein atoms are allowed to move, the dielectric model used in our electrostatic calculations breaks down when modeling the gramicidin channel.  相似文献   

3.
If the ion concentration is low enough that most channels are unoccupied, then the ‘independence relations’ should be satisfied and the permeability ratio should equal the conductance ratio. It has been previously reported that for the gramicidin A channel these ratios for Na+ and K+ were not equal at concentrations as low as 10 mM. However, these ratios were not measured at the same applied potential, as is required by the theory. Instead, the conductance ratio was measured at 100 mV and corrected using calculated current-voltage relations. In this report the comparison between permeability and conductance ratios is reexamined using data obtained at the correct potential. There is no significant difference in the ratios at 10 mM when they are measured at the same voltage. This implies that most channels are not occupied by sodium or potassium ions at 10 mM.  相似文献   

4.
The force fields commonly used in molecular dynamics simulations of proteins are optimized under bulk conditions. Whether the same force fields can be used in simulations of membrane proteins is not well established, although they are increasingly being used for such purposes. Here we consider ion permeation in the gramicidin A channel as a test of the AMBER force field in a membrane environment. The potentials of mean force for potassium ions are calculated along the channel axis and compared with the one deduced from the experimental conductance data. The calculated result indicates a rather large central barrier similar to those obtained from other force fields, which are incompatible with the conductance data. We suggest that lack of polarizability is the most likely cause of this problem, and, therefore, urge development of polarizable force fields for simulations of membrane proteins.  相似文献   

5.
The formation kinetics of gramicidin A channels in lipid bilayer membranes has been characterized as a function of voltage for different solution conditions and membrane composition. The frequency of channel events was measured during the application of voltage ramps and counted in given intervals, a procedure that eliminated the effects of drift in gramicidin concentration. The formation rate was found to increase strongly with voltages up to approximately 50 mV and then to level off slightly. The shape of the voltage dependence was independent of lipid solvent and ramp speed but differed for different ions and different solution concentrations. This suggested an ion occupancy effect on the formation rate that was further supported by the fact that the minimum of the formation rate was shifted toward the equilibrium potential in asymmetric solution concentrations. The effects are explained in terms of a model that contains two contributions to the voltage dependence, a voltage-dependent ion binding to the monomers and a polarization of monomers by the applied electric field and by the occupied ions. The theory is found to give a good fit to experimental data.  相似文献   

6.
This article describes a new method for direct fluorometric immunoassay with a liposome array using pH-sensitive dye (BCECF [2',7'-bis(carboxyethyl)-4 or 5-carboxyfluorescein])-encapsulating liposomes immobilized on an avidin slip and gramicidin channels. The liposomes were composed of phosphatidylcholine (PC), cholesterol (Chol), biotinylated phosphatidylethanolamine (B-cap-PE), and recognition sites (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(2,4-dinitrophenyl) [DNP-PE], Fab' fragment of anti-substance P, and Fab' of anti-neurokinin A). The addition of gramicidin induced release of H(+) ions from the inner solution (pH 5.5) to the outer one (pH 7.8), enhancing fluorescence of BCECF (1.0mM) encapsulated in liposome. The binding of an analyte (anti-dinitrophenyl [anti-DNP], avidin, substance P, or neurokinin A) to the membrane-bound recognition sites caused further enhancement of fluorescence of BCECF due to a local distortion of the bilayer structure that affects the channel kinetics of gramicidin. The intensity of fluorescence from the immobilized liposomes 60 min after the addition of gramicidin (10 ng/ml) increased with an increase in the concentration of anti-DNP ranging from 1.2 x 10(-8) to 1.2 x 10(-6)g/ml, avidin ranging from 1.0 x 10(-8) to 1.0 x 10(-6)g/ml, substance P ranging from 1.0 x 10(-8) to 1.0 x 10(-6)g/ml, and neurokinin A ranging from 1.0 x 10(-8) to 1.0 x 10(-6)g/ml. The direct fluorometric immunoassay with a liposome array is simple and easy to carry out. The intensity of fluorescence emitted from the immobilized liposomes is directly measured after incubation with a sample solution and a gramicidin solution in sequence without washing steps. The assay allows simultaneous quantification of multiple components without labeling of antibody or antigen with a fluorescent tag. The liposome-based assay is discussed in terms of principle, sensitivity, and selectivity.  相似文献   

7.
Guanidinium and acetamidinium, when added to the bathing solution in concentrations of approximately 0.1M, cause brief blocks in the single channel potassium currents from channels formed in planar lipid bilayers by gramicidin A. Single channel lifetimes are not affected indicating that the channel structure is not modified by the blockers. Guanidinium block durations and interblock times are approximately exponential in distribution. Block frequencies increase with guanidinium concentration whereas block durations are unaffected. Increases in membrane potential cause an increase in block frequency as expected for a positively charged blocker but a decrease in block duration suggesting that the block is relieved when the blocker passes through the channel. At low pH, urea, formamide, and acetamide cause similar blocks suggesting that the protonated species of these molecules also block. Arginine and several amines do not block. This indicates that only iminium ions which are small enough to enter the channel can cause blocks in gramicidin channels.  相似文献   

8.
A model based on the solution of the electrostatic potential for a geometry of three dielectric regions associated with a gramicidin A channel (GA) is presented. The model includes a cylindrical dielectric layer to represent the peptide backbone and dipole rings to account for dipolar side chains. Image potential and dipolar contributions for different orientations and positions along the channel are analyzed. The conductance of GA and two analogues obtained by substituting the amino acid at position 1 are studied. The numerical simulation reproduces experimental results (Barrett et al. 1986, Biophys J 49, 673–686) and supports the idea that electrostatic dipole-ion interactions are of primary importance in gramicidin channel function. Correspondence to: G. Martinez  相似文献   

9.
The aromatic polyene antibiotic levorin A2 forms ion channels permeable to monovalent cations, in lipid membranes containing cholesterol or ergosterol. Channel conductivity is in the range 0.3–0.5 pS. The channel has two main states: conducting (open) and nonconducting (closed). The potential-dependent formation of levorin A2 channels is observed in lipid membranes. The system responsible for the ion-channel selectivity is localized on the hydrophilic side of the lactone ring of the polyene molecule.  相似文献   

10.
The d-/l-peptide gramicidin A (gA) is well known as a pivotal ion channel model and shows a broad spectrum of bioactivities such as antibiosis, antimalarial activity, as well as hemolysis. We applied inter-chain disulfide bonds to constrain the conformational freedom of gA into parallel and antiparallel dimeric topologies. Albeit the constructs were not found to be monoconformational, CD- and IR-spectroscopic studies suggested that this strategy indeed restricted the conformational space of the d-/l-peptide construct, and that β-helical secondary structures prevail. Correlative testing of gA dimers in antimicrobial, antimalarial, and ion conduction assays suggested that the tail-to-tail antiparallel single stranded β6.3 helix dominantly mediates the bioactivity of gA. Other conformers are unlikely to contribute to these activities. From these investigations, only weakly ion conducting gA dimers were identified that retained nM antimalarial activity.  相似文献   

11.
Electric fields due to transmembrane potential differences or ionic gradients across the membrane are presumably crucial for many reactions across membranes or close to membranes like signal transduction, control of ion channels or the generation of neural impulses. Molecular dynamics simulations have been used to study the influence of external electric fields on a mixed gramicidin/phospholipid bilayer system. At high field strengths, formation of membrane electropores occurred both close and distal to the gramicidin. Gramicidin was found to stabilize the membrane adjacent to the protein but also at larger distances of up to 2-3 nm. As a result, membrane pore formation was found to be significantly suppressed for the mixed gramicidin/DMPC system. Moderate field strengths only weakly affected the structure and dynamics of the gramicidin. Spontaneous potassium passage events in external electric fields were observed for both the head-to-head helical conformation as well as for the double helical conformation of gramicidin A. The double-helical conformation was found to facilitate ion passage compared to the head-to-head helical dimer.  相似文献   

12.
Histochemistry and immunocytochemistry using an antibody to adult rat slow-type myosin demonstrated that about 10% of the fibers in the mouse extensor digitorum longus and semimembranosus muscles contain slow myosin during the first month after birth. In adult animals, these muscles have only 0-08% slow myosin-containing fibers. These results demonstrate a developmentally linked disappearance of an adult-type myosin, and show that the adult phenotype of muscle fibers is not necessarily determined before birth as previously suggested.  相似文献   

13.
The interaction of gramicidin A with lysolecithin micelles and with lecithin liposomes is demonstrated by circular dichroism to result in several metastable conformational states. A stable state can be obtained after extensive heating when the gramicidin A was added dry or in ethanol solution to the phospholipid dispersion but the stable state is readily obtained when gramicidin A is added in a trifluoroethanol solution. The circular dichroism of the stable conformational state is characterized by negative ellipticity below 205 nm and principally by a positive 220 nm band on which is superposed a weak 230 nm band (the latter likely arising from tryptophan side chains). The stable conformational state is considered to be that of the functional transmembrane channel primarily on the basis of extensive studies on its interaction with sodium ions.  相似文献   

14.
The thallium-205 chemical shift was determined as a function of temperature for the thallium(I) complexes of gramicidin A and gramicidin B in 2,2,2-trifluoroethanol. From the difference in magnitude of the induced chemical shift it was determined that gramicidin B does not bind the Tl(I) ion as well as does gramicidin A. This result may explain the lower single-channel conductance of gramicidin B relative to gramicidin A. Cabon-13 NMR studies strongly indicate that the binding site for gramicidin A and B is at teh tryptophan end of the molecule and that replacement of tryptophan residue at position 11 in gramicidin A with a phenylalanine to form gramicidin B produces a significant structural change at the tryptophan end of the molecule, but has little effect on the N-terminus.  相似文献   

15.
Summary The gene for the antibacterial peptide colicin B was cloned and transformed into a host background where it was constitutively overexpressed. The purified gene product was biologically active and formed voltage-dependent, ion-conducting channels in planar phospholipid bilayers composed of asolectin. Colicin B channels exhibited two distinct unitary conductance levels, and a slight preference for Na+ over Cl. Kinetic analysis of the voltage-driven opening and closing of colicin channels revealed the existence of at least two conducting states and two nonconducting states of the protein. Both the ion selectivity and the kinetics of colicin B channels were highly dependent on pH. Excess colicin protein was readily removed from the system by perfusing the bilayer, but open channels could be washed out only after they were allowed to close. A monospecific polyclonal antiserum generated against electrophoretically purified colicin B eliminated both the biological and in vitro activity of the protein. Membrane-associated channels, whether open or closed, remained functionally unaffected by the presence of the antiserum. Taken together, our results suggest that the voltage-independent binding of colicin B to the membrane is the rate-limiting step for the formation of ion channels, and that this process is accompanied by a major conformational rearrangement of the protein.  相似文献   

16.
17.
Three different gramicidin A analogues bearing acyl chains of various length on the ethanolamine moiety have been studied by investigating their single channel behaviour and their monolayer properties. It is shown that the single channel conductance does not depend on the substitution of the ethanolamine OH group and that the channel lifetime is roughly proportional to the length of the alkyl chain. The monolayer study indicates that acylation of gramicidin A produces compounds which have medium-dependent conformations. These acylated compounds are miscible with lipids, while GA is not, and the surface potential is not modified by the esterification of the alcohol group. Offprint requests to: F. Heitz  相似文献   

18.
Abstract A new method of pore size determination is presented. The results of applying this simple method to ion channels formed by staphylococcal α-toxin and its N-terminal fragment as well as to cholera toxin channels are shown. The advantages and the difficulties of this method are discussed. It was found that (i) the mobility of ions in solutions depends only on the percentage of concentration of added non-electrolytes and practically not on their chemical nature (sugars or polyglycols) and molecular size; (ii) the proportional change of both ion channel conductance and bulk solution conductivity by low M . non-electrolytes may be used as an indication of a diffusion mechanism of ion transport through channels; (iii) the slope of the dependence of the ion channel conductance on the bulk conductivity of solutions containing different concentrations of non-electrolyte is a good measure of channel permeability for non-electrolytes.  相似文献   

19.
A method for constructing the suitable initial configuration of the membrane-protein system for molecular dynamics (MD) simulations is presented. This method could provide some hydrated initial configurations and help us to determine the best surface area of the system by contracting the surface area and comparing the optimized lowest energy of the system by energy minimization. The gramicidin A (GA) channel in;the fully hydrated dimyristoylphosphatidylcholine (DMPC) bilayer was used as our model. Three configurations with different surface areas were selected and applied for one 400 ps and two 300 ps MD simulations at constant pressure and temperature. All simulations were fairly stable without any constraints. Through analysis of the MD trajectories we found that the system with the best surface area was more stable than the other two systems, whose sizes were changed in the simulations. Further analysis of the bilayer normal length and the order parameters of the lipid alkyl tails indicates that the system with the best surface area shows some characteristics of the Lα phase, while both the smaller and the larger size systems have distinct deviations from the Lα phase that we expect. This illustrates that the correct surface area and the suitable initial configuration have an important influence on the phase of the membrane in the MD simulation. In addition, by comparing the root mean square differences of GA relative to the initial structure and interaction energy between different components of the system for all three systems, we find that the state of the DMPC bilayer has exerted a significant influence on the structure of GA. All these results demonstrate the validity of our method for constructing the initial configuration of the membrane-protein system for MD simulations. Received: 10 September 1998 / Revised version: 19 March 1999 / Accepted: 19 March 1999  相似文献   

20.
Ion channels catalyze the permeation of charged molecules across cell membranes and are essential for many vital physiological functions, including nerve and muscle activity. To understand better the mechanisms underlying ion conduction and valence selectivity of narrow ion channels, we have employed free energy techniques to calculate the potential of mean force (PMF) for ion movement through the prototypical gramicidin A channel. Employing modern all-atom molecular dynamics (MD) force fields with umbrella sampling methods that incorporate one hundred 1-2 ns trajectories, we find that it is possible to achieve semi-quantitative agreement with experimental binding and conductance measurements. We also examine the sensitivity of the MD-PMF results to the choice of MD force field and compare PMFs for potassium, calcium and chloride ions to explore the basis for the valence selectivity of this narrow and uncharged ion channel. A large central barrier is observed for both anions and divalent ions, consistent with lack of experimental conductance. Neither anion or divalent cation is seen to be stabilized inside the channel relative to the bulk electrolyte and each leads to large disruptions to the protein and membrane structure when held deep inside the channel. Weak binding of calcium ions outside the channel corresponds to a free energy well that is too shallow to demonstrate channel blocking. Our findings emphasize the success of the MD-PMF approach and the sensitivity of ion energetics to the choice of biomolecular force field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号