首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The partitioning of TEMPO into phosphatidylcholine vesicle membranes is reduced upon addition of poly(ethylene glycol). This is caused by reduced polarity of the aqueous phase as well as decreased membrane fluidity in the presence of poly(ethylene glycol). The isotropic hyperfine splitting of TEMPO in aqueous poly(ethylene glycol) solutions was used as a measure of solvent polarity. The alterations of the membrane fluidity were detected by means of two different fatty acid spin labels. The influences of physicochemical properties of an aqueous poly(ethylene glycol) phase on the membrane structure of cells and vesicles are discussed in the light of membrane fusion.  相似文献   

2.
Interaction of phospholipid membranes with poly(ethylene glycol)s   总被引:4,自引:0,他引:4  
1. The water-soluble polymer, poly(ethylene glycol), causes concentration-dependent increases in the temperature of the gel--liquid crystalline phase transitions of aqueous dispersions of dipalmitoyl phosphatidylcholine and of dipalmitoyl phosphatidylethanolamine. 2. For dipalmitoyl phosphatidylcholine it has been further demonstrated that poly(ethylene glycol) increases the transition enthalpy and entropy while decreasing the cooperativity of the transition. 3. These results are discussed in relation to the possible modes of action of poly(ethylene glycol) in promoting cell fusion.  相似文献   

3.
Aggregation and fusion of unilamellar vesicles by poly(ethylene glycol)   总被引:5,自引:0,他引:5  
Various aspects of the interaction between the fusogen, poly(ethylene glycol) and phospholipids were examined. The aggregation and fusion of small unilamellar vesicles of egg phosphatidylcholine (PC), bovine brain phosphatidylserine (PS) and dimyristoylphosphatidylcholine (DMPC) were studied by dynamic light scattering, electron microscopy and NMR. The fusion efficiency of Dextran, glycerol, sucrose and poly(ethylene glycol) of different molecular weights were compared. Lower molecular weight poly(ethylene glycol) are less efficient with respect to both aggregation and fusion. The purity of poly(ethylene glycol) does not affect its fusion efficiency. Dehydrating agents, such as Dextran, glycerol and sucrose, do not induce fusion. 31P-NMR results revealed a restriction in the phospholipid motion by poly(ethylene glycol) greater than that by glycerol and Dextran of similar viscosity and dehydrating capacity. This may be associated with the binding of poly(ethylene glycol) to egg PC, with a binding capacity of 1 mol of poly(ethylene glycol) to 12 mol of lipid. Fusion is greatly enhanced below the phase transition for DMPC, with extensive fusion occurring below 6% poly(ethylene glycol). Fusion of PS small unilamellar vesicles depends critically on the presence of cations. Large unilamellar vesicles were found to fuse less readily than small unilamellar vesicles. The results suggest that defects in the bilayer plays an important role in membrane fusion, and the 'rigidization' of the phospholipid molecules facilitates fusion possibly through the creation of defects along domain boundaries. Vesicle aggregation caused by dehydration and surface charge neutralization is a necessary but not a sufficient condition for fusion.  相似文献   

4.
The interaction of water-soluble polymers with dipalmitoyl phosphatidylcholine small vesicles and the effect on vesicle fusion were studied by means of 1H-NMR spectrometry. The motion of dipalmitoyl phosphatidylcholine molecules decreased on interaction with the polymers and was detected as a change in the signal intensity. The interaction behavior of polymers is very sensitive to the chemical structure of the applied polymers. Poly(styrene sulfonic acid) and poly(ethylene glycol) decreased the motion of the choline methyl group, predominantly through coulombic and hydrophobic interaction forces, respectively. For example, in the case of the poly(styrene sulfonic acid)-containing system, the signal intensity of the choline methyl group was decreased about 15% while those of the hydrophobic methylene and terminal methyl groups were scarcely decreased by the addition of polymer to a final concentration of 4.0 · 10t-2 unit mol/1. These polymers are considered to interact with the surface of the vesicle membrane. On the other hand, poly(l-glutamic acid) and poly(N-vinyl-2-pyrrolidone) decreased the signal intensities of not only the choline methyl group, but also those of the hydrophobic methylene and terminal methyl groups. This result suggest that part of these polymers might be incorporated into the hydrophobic region of the vesicle membrane.Addition of the non-ionic polymers inhibited vesicle fusion considerably. This effect was explained by the stabilization of dipalmitoyl phosphatidylcholine vesicles by complexation with these polymers.  相似文献   

5.
Interaction of chemical fusogen n-nonyl bromide with a model membrane formed from phosphatidylcholine was studied using 2D-NMR spectra of heavy water and 31P-NMR proton decoupled spectra of the lipid phosphate group in multilamellar lipid dispersions. n-Nonyl bromide was found to influence the hydration layer of the model membrane. No participation of phosphatidylcholine molecules in non-bilayer configurations of the membrane was observed.  相似文献   

6.
The dielectric constant of water is reduced drastically on addition of poly(ethylene glycol). The behaviour is not described by a linear mixture equation. The decreased dielectric constant can lead to the general perturbation of the membrane structure which is necessary in such a manner that a strong aggregation of membranes would lead to their fusion. The changed cation permeability in the presence of poly(ethylene glycol) can explained as the effect of the lowered dielectric constant on the transfer energy.  相似文献   

7.
Conventional electron spin resonance (ESR) spectroscopy of different positional isomers of phosphatidylcholine spin labels (n-PCSL; n=5, 7, 10, 12, 14, and 16) has been used to study micellar dispersions made of poly(ethylene glycol)s-phosphatidylethanolamines (PEGs-PEs) polymer-lipids. Such aggregates are currently used as long circulating drug delivery systems "in vivo." We varied both the hydrocarbon chain length and the polymer size of the polymer-lipids. The dependence of the lipid-chain packing density on temperature and on label position as well as the flexibility and polarity profiles with position of chain labeling have been established for the PEGs-PEs micellar dispersions. The results show both similarity and differences either with common micellar dispersions of single chained lyso-palmitoylphosphatidylcholine (C(16)Lyso-PC) or with lamellar dispersions of double chained dipalmitoylphosphatidylcholine (DPPC). Well defined chain flexibility gradients of the same overall shape are obtained in the considered dispersions. However, the mobility of the first acyl chain segments is appreciable higher in micelles of polymer-lipids than in bilayers of DPPC and it becomes indistinguishable at the chain termini. A trend of decreasing polarity on moving toward the bilayer interior is seen in DPPC bilayers, whereas biphasic polarity profiles are obtained in micelles of polymer-lipids and C(16)Lyso-PC. Moreover, the properties of the PEGs-PEs micelles do not depend on the length of the hydrocarbon chain of the polymer-lipids but are slightly influenced by the size of the polymer.  相似文献   

8.
Raman spectroscopy and X-ray diffraction are used to study the effect of heat and Ca2+ on dimyristoylphosphatidylethanolamine dispersions. Unlike phosphatidylcholine dispersions, dimyristoylphosphatidylethanolamine bilayers (at pH 8) require heating above Tm in order for hydration to occur and apparently bind Ca2+ at very low levels. These results are related to models for membrane fusion.  相似文献   

9.
Summary Polyethylene glycol, a known cell fusogen, is found to induce the formation of structural defects in egg phosphatidylcholine multilamellar vesicles, as shown by freeze-fracture microscopy.31P NMR spectra of these vesicles reveal the existence of a nonbilayer (isotropic) phase. The observed disruption in the bilayers is believed to be associated with an intermediate stage of membrane fusion.Abbreviations PEG Polyethylene glycol - IMP Intramembranous particle - PC Phosphatidylcholine - PS Phosphatidylserine - SUV Small unilamellar vesicles - MLV Multilamellar vesicles - DPPC Dipalmitoyl phosphatidylcholine - DSC Differential scanning calorimetry - DMPC Dimyristoylphosphatidylcholine - T c Phase transition temperature  相似文献   

10.
Changes in molecular arrangement of membrane phospholipids in the course of lipid autoxidation were studied by means of broad-band 31-P NMR spectroscopy. Multilamellar liposomes prepared from egg yolk phosphatidylcholine (PC) or total lipid extracts from rat brains (TL) were used as models. The initial lamellar arrangement of phospholipids of both types changed as lipid peroxidation proceeded and a narrow isotropic signal appeared in the spectra at 0 ppm, this phenomenon being more prominent for TL than for PC. Probably the isotropic signal represents some nonlamellar structures within the membranes of peroxidized lipids.  相似文献   

11.
It was clearly shown that the change in thermodynamical parameters could cause the segregation of membrane protein aggregations in the phospholipid membrane. At first, reconstituted vesicles were prepared with a membrane protein, bacteriorhodopsin and a constituent phospholipid of biomembranes, L-alpha-dimyristoyl phosphatidylcholine. When the temperature of the suspension was decreased or the osmotic pressure was increased by adding poly(ethylene glycol) to this vesicle suspension at 23 degrees, the circular dichroism spectra showed a typical band indicating bacteriorhodopsin trimer formation implying their aggregation. This suggests that the aggregation of trimers proceeded by adding poly(ethylene glycol) into vesicle suspension, just as it proceeded by decreasing the temperature. Next, vesicles were prepared with fluorescein isothiocyanate-labeled bacteriorhodopsin, photoemissive bacteriorhodopsin and L-alpha-dimyristoyl phosphatidylcholine. The excitation energy transfer between the two modified proteins was measured by fluorescence spectroscopy. In this case, however, when poly(ethylene glycol) was added into the suspension, the yield of the excitation energy transfer decreased. This result indicates that modified proteins aggregate separately in a segregated form in the vesicle membrane.  相似文献   

12.
M Sj?lund  L Rilfors  G Lindblom 《Biochemistry》1989,28(3):1323-1329
Investigations of lipid-alkane systems are important for an understanding of the interactions between lipids and hydrophobic/amphiphilic peptides or other hydrophobic biological molecules. A study of the formation of nonlamellar phases in several phosphatidylcholine (PC)-alkane-2H2O systems has been performed. The PC molecules chosen in this work are dipalmitoyl-PC (DPPC), 1-palmitoyl-2-oleoyl-PC (POPC), dioleoyl-PC (DOPC), and dilinoleoyl-PC (DLiPC), lipids that in excess water form just a lamellar liquid-crystalline phase up to at least 90 degrees C. The addition of n-alkanes (C8-C20) to these PC-2H2O systems induces the formation of reversed hexagonal (HII) and isotropic phases. The water and dodecane concentrations required to form these phases depend on the degree of acyl chain unsaturation of the PC molecules and increase in the order DLiPC approximately DOPC less than POPC less than DPPC. The most likely explanation to this result is that the diameter of the lipid-water cylinders in the HII phase grows gradually larger with increased acyl chain saturation and more water and dodecane are consequently needed to fill the water cylinders and the void volumes between the cylinders, respectively. The ability of the alkanes to promote the formation of an HII phase is strongly chain length dependent. Although the number of alkane carbon atoms added per DOPC molecule in the DOPC-n-alkane-2H2O mixtures was kept constant, this ability decreased on going from octane to eicosane. The thermal history of a DPPC-n-dodecane-2H2O sample was important for its phase behavior.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
(1) The water soluble polymer, poly(ethylene glycol), causes aggregation of sonicated vesicles of dimyristoylphosphatidylcholine in a manner consistent with a steric exclusion mechanism. (2) Poly(ethylene glycol) promotes the exchange of lipids between multilamellar vesicles of dimyristoylphosphatidylcholine and dipalmitoylphosphatidylcholine when the lipids are in the liquid-crystalline state. (3) 31P-NMR studies demonstrate that the bilayer configuration of smectic mesophases of dipalmitoylphosphatidylcholine is substantially maintained in the presence of poly(ethylene glycol).  相似文献   

14.
S Das  R P Rand 《Biochemistry》1986,25(10):2882-2889
The effects of incorporating diacylglycerol (DG) derived from egg phosphatidylcholine (PC) into PC, egg phosphatidylethanolamine (PE), and bovine phosphatidylserine (PS) have been measured. In excess solution DG induces a multilamellar-to-hexagonal (L-H) structural transition in PE and PC that is temperature dependent. At 37 degrees C it begins at about 3 and 30 mol%, respectively. In PC at lower DG concentrations a modified lamellar phase is formed; at about 70 mol% DG a single primitive cubic phase forms. An L-H transition induced by 20-30 mol% DG in PS is dependent on ionic strength and degree of lipid hydration, with the appearance of crystalline acyl chains at the higher DG levels. Calcium precipitates of DG/PS (1/1) mixtures have melted chains. Structural parameters were derived for the lamellar phases at subtransition levels of DG in PE and PC. The area per polar group is increased, but by contrast with cholesterol, the polar group spreading is not accompanied by an increase in bilayer thickness. DG does not affect the equilibrium separation of PC or PE bilayers. Measured interbilayer forces as they vary with bilayer separation show that DG at 20 mol% does not effect closer apposition of PC bilayers at any separation. Spreading the polar groups may effect the binding of protein kinase C or the activation of phospholipases; the nonlamellar phases may be linked to the biochemical production of DG in cellular processes involving membrane fusion.  相似文献   

15.
1H-, 13C-and 31P-NMR spectra of egg-yolk phosphatidylcholine (PC), phosphatidylserine (PS) and phosphatidic acid (PA) and cosonicated mixtures of these phospholipids were obtained from ultrasonicatcd dispersions containing Pr3+, Eu3+, Gd3+ and Mn2+ ions.The differences in chemical shift values. °n, between the “inner” and “outer” resonance signals for the different nuclei of the polar head group of egg-yolk phosphatidyl choline provide information about the average distances of the paramagnetic ion within the polar groups of the phospholipid molecules. In the Pr(2H2O)3+n/egg-yolk phosphatidylcholine system the ions are nearest to the phosphate and -CH2CH2 group, respectively but relatively far from the N(CH3)3 group of the polar head group of the lipid.The integral analysis of the1 H-NMR spectra obtained from dispersions containing Pr3+ and Mn2+ ions enables us to calculate the number of the polar groups in both sides of the egg-yolk phosphatidylcholine bilayer, the size of the lipid vesicle and to give some features of the arrangement of the phospholipid molecules in cosonicated egg-yolk phosphatidylcliotine/ phosphatidytserine vesicles. At p2H 8.3 in PC/PS mixtures an extreme asymmetry is observed with PS preferentially in the outer side of the membrane. This side contains approximately three times more PS than PC molecules.Some comments are made concerning the quantitative integral analysis of proton-noise decoupled 31 P-NMR spectra as obtained from similar phospholipid mixtures by Michaelson et al. and Berden et at.  相似文献   

16.
We examined the effect of a cholesterol derivative, poly (ethylene glycol) cholesteryl ether on the structure/function of clathrin-coated pits and caveolae. Addition of the compound to cultured cells induced progressive smoothening of the surface. Markedly, when the incorporated amount exceeded 10% equivalent of the surface area, fluid pinocytosis, but not endocytosis of transferrin, became inhibited in K562 cells. In A431 cells, both clathrin-independent fluid phase uptake and the internalization of fluorescent cholera-toxin B through caveolae were inhibited with concomitant flattening of caveolae. In contrast, clathrin-mediated internalization of transferrin was not affected until the incorporated poly (ethylene glycol) cholesteryl ether exceeded 20% equivalent of the plasma membrane surface area, at which point opened clathrin-coated pits accumulated. The cells were ruptured upon further addition of poly (ethylene glycol) cholesteryl ether. We propose that the primary reason for the differential effect of poly (ethylene glycol) cholesteryl ether is that the bulk membrane phase and caveolae are both more elastic than the rigid clathrin-coated pits. We analyzed the results with the current mechanical model (Rauch and Farge, Biophys J 2000;78:3036–3047) and suggest here that the functional clathrin-lattice is much stiffer than typical phospholipid bilayers.  相似文献   

17.
The thermotropic phase behavior of dioleoylphosphatidylcholine and six of its longer chain homologues was studied by differential scanning calorimetry and 31P nuclear magnetic resonance (NMR) spectroscopy. Aqueous dispersions of these compounds all exhibit a single endotherm upon heating but upon cooling exhibit at least two exotherms, both of which occur at temperatures lower than those of their heating endotherm. The single transition observed upon heating was shown by 31P NMR spectroscopy to be a net conversion from a condensed, subgel-like phase (Lc phase) to the liquid-crystalline state. Aqueous ethylene glycol dispersions of these compounds also exhibit single endotherms upon heating and cooling exotherms centered at temperatures lower than those of their corresponding heating endotherm. However, the behavior of the aqueous ethylene glycol dispersions differs with respect to their transition temperatures and enthalpies as well as the extent of "undercooling" observed, and there is some evidence of discontinuities in the cooling behavior of the odd- and even-numbered members of the homologous series. Like the aqueous dispersions, 31P NMR spectroscopy also shows that the calorimetric events observed in aqueous ethylene glycol involve net interconversions between an Lc-like phase and the liquid-crystalline state. However, the Lc phase formed in aqueous ethylene glycol dispersions exhibits a considerably broader powder pattern than that observed in water. This, together with the fact that the transition enthalpies of the aqueous ethylene glycol dispersions are considerably higher than those of the aqueous dispersions, indicates that these lipids form more ordered Lc phases in aqueous ethylene glycol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Aqueous dispersions of n-acyl cerebrosides are known to exhibit metastable polymorphism of the type: (Formula: see text). The involvement of hydration in this metastable polymorphism has been investigated by differential scanning calorimetric studies of aqueous palmitoylgalactocerebroside (C16:0-CER) dispersions in the presence of agents which disrupt water structure. In the presence of 50 vol% ethylene glycol or 50 vol% dimethyl sulfoxide, only a single reversible ordered----liquid-crystalline transition is observed. This single ordered----liquid-crystalline transition exhibits a smaller enthalpy and occurs at a lower temperature than the major Polymorph II----liquid-crystal transition observed for dispersions in water alone. These results indicate that metastable polymorphism in C16:0-CER is related to hydration.  相似文献   

19.
Membranes are the primary site of freezing injury during cryopreservation or vitrification of cells. Addition of cryoprotective agents (CPAs) can reduce freezing damage, but can also disturb membrane integrity causing leakage of intracellular constituents. The aim of this study was to investigate lipid-CPA interactions in a liposome model system to obtain insights in mechanisms of cellular protection and toxicity during cryopreservation or vitrification processing. Various CPAs were studied including dimethyl sulfoxide (DMSO), glycerol (GLY), ethylene glycol (EG), dimethyl formamide (DMF), and propylene glycol (PG). Protection against leakage of phosphatidylcholine liposomes encapsulated with carboxyfluorescein (CF) was studied upon CPA addition as well as after freezing-and-thawing. Molecular interactions between CPAs and phospholipid acyl chains and headgroups as well as membrane phase behavior were studied using Fourier transform infrared spectroscopy. A clear difference was observed between the effects of DMSO on PC-liposomes compared to the other CPAs tested, both for measurements on CF-retention and membrane phase behavior. All CPAs were found to inhibit membrane leakiness during freezing. However, exposure to high CPA concentrations already caused leakage before freezing, increasing in the order DMSO, EG, DMF/PG, and GLY. With DMSO, liposomes were able to withstand up to 6 M concentrations compared to only 1 M for GLY. Cholesterol addition to PC-liposomes increased membrane stability towards leakiness. DMSO was found to dehydrate the phospholipid headgroups while raising the membrane phase transition temperature, whereas the other CPAs caused an increase in the hydration level of the lipid headgroups while decreasing the membrane phase transition temperature.  相似文献   

20.
Spin-label electron spin resonance (ESR) spectroscopy, together with optical density measurements, has been used to investigate, at both the molecular and supramolecular levels, the interactions of N-poly(ethylene glycol)-phosphatidylethanolamines (PEG-PE) with phosphatidylcholine (PC) in aqueous dispersions. PEG-PEs are micelle-forming hydrophilic polymer-grafted lipids that are used extensively for steric stabilization of PC liposomes to increase their lifetimes in the blood circulation. All lipids had dipalmitoyl (C16:0) chains, and the polymer polar group of the PEG-PE lipids had a mean molecular mass of either 350 or 2000 Da. PC/PEG-PE mixtures were investigated over the entire range of relative compositions. Spin-label ESR was used quantitatively to investigate bilayer-micelle conversion with increasing PEG-PE content by measurements at temperatures for which the bilayer membrane component of the mixture was in the gel phase. Both saturation transfer ESR and optical density measurements were used to obtain information on the dependence of lipid aggregate size on PEG-PE content. It is found that the stable state of lipid aggregation is strongly dependent not only on PEG-PE content but also on the size of the hydrophilic polar group. These biophysical properties may be used for optimized design of sterically stabilized liposomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号