首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid method for the isolation of acetylcholine receptor-rich membranes from Torpedo marmorata electric organ, using a Percoll density gradient, is presented. The preparation of purified membranes appeared on electron microscope examination as a homogeneous population of sealed vesicles, covered with the characteristic rosettes identified as acetylcholine receptor clusters. Biochemical characterization revealed an α-bungarotoxin specific binding activity of 1.6–2.1 nmol/mg of protein, low acetylcholinesterase specific activity, a protein:lipid ratio (w/w) of 2.1 with high cholesterol content. Polyacrylamide gel electrophoresis under denaturing conditions showed the polypeptide bands characteristic of the receptor (α, β, γ and δ), together with 43 kDa and ~100 kDa proteins (already described as ν and ?).The method is simple and rapid, and maintains constant osmotic conditions throughout. It thus represents an improvement over previous methods, and will be useful for routine preparation and specially for studying post-synaptic membrane components interactions.  相似文献   

2.
The factors influencing the overall mobility of the major proteins of the acetylcholine receptor-rich membranes from Torpedo marmorata have been investigated by saturation transfer ESR spectroscopy and the lateral distribution of these proteins has been studied by electron microscopy. A spin-labelled derivative of maleimide, 3-maleimido-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl (MSL), was used under various conditions of incubation, enabling us to attach it mainly to either an extrinsic protein of 43 kdaltons, or an intrinsic protein (40 kdaltons) bearing the α-toxin-binding site. (1) The direct reaction of MSL with the membrane fragments resulted in almost exclusive labelling of the 43 kdalton protein, an extrinsic protein located on the inner face of the receptor-rich membranes. (2) After the free SH groups were blocked with N-ethylmaleimide and the disulfide bridges opened with the reducing agent dithiothreitol, MSL reacted with both the 40 and 43 kdalton proteins (6.0±0.6MSL molecules per α-toxin-binding site). (3) After the latter labelling procedure membranes were exposed to pH 11, resulting in extraction of the 43 kdalton protein and leaving 2.2 ± 0.4MSL molecules per α-toxin-binding site; sodium dodecyl sulfate polyacrylamide gel electrophoresis performed with N-[14C]ethylmaleimide suggested that MSL was bound mainly to the 40 kdalton polypeptide chain of the acetylcholine receptor. The following conclusions were made with the native and alkaline-treated membranes: In the native membranes, saturation transfer ESR does not reveal any significant protein rotational diffusion (itrotational correlation time τc > 1 ms). Temperature variations and/or lipid modifications obtained by fusion of exogenous lipids and/or cholesterol exchange have little influence on the saturation transfer ESR spectra. Electron microscopy reveals that upon lipid addition, proteins remain in the form of clusters while areas depleted of proteins appear. On the other hand, alkaline treatment strikingly enhances the motion of the MSL-labelled proteins in the membrane (100 ? τc ? 120 μs). Furthermore, the rotational diffusion of the MSL-labelled proteins (mainly the 40 kdalton protein) becomes sensitive to temperature, lipid composition and the lipid-to-protein ratio. Electron microscopy shows that alkaline extraction does not cause large reorganization of the acetylcholine receptor in the plane of the membrane. However, when phospholipids are added to pH 11 treated membranes, a dispersion of the receptor rosettes is observed. In contrast, cholesterol enrichment of the latter membranes induces clustering of the receptor and immobilization as judged by saturation transfer ESR. Upon reassociation of the pH 11 soluble proteins with the alkaline-treated membranes, the restriction of the acetylcholine receptor rotational mobility is also restored (τc ? 1 ms).  相似文献   

3.
Maximum levels of binding of α-bungarotoxin to foetal human brain membranes were found to remain essentially constant at 30–50 fmol/mg protein (1.1–1.5 pmol/g wet weight in whole brain) between gestational ages of 10 and 24 weeks. Equilibrium binding of α-bungarotoxin to both membranes and to detergent extracts showed saturable specific binding to a single class of sites with Kd (app) values of 3.5 × 10?9 M and 2.4 × 10?9 M respectively. Association rate constants, determined from time courses of binding of α-bungarotoxin to membranes and detergent extracts, were 2.3 × 105 M?1 sec?1 and 2.6 × 105 M?1 sec?1 respectively. Dissociation of α-bungarotoxin from both membrane and detergent extracts showed a rapid initial rate with T12 approx 15 min which, in the case of the detergent extract, was followed by a slower dissociation accounting for the remaining 20% of the bound ligand. Competition studies with a number of cholinergic ligands indicated that the α-bungarotoxin-binding sites in foetal brain display a predominantly nicotinic profile.  相似文献   

4.
Acetylcholine receptor-rich membrane fragments from Torpedocalifornica electroplax after covalent labelling at the protein-lipid boundary by nitrenes generated insitu from pyrenesulfonyl azide can bind [125I]-α-bungarotoxin. The covalent attachment of 6–8 molecules of the fluorescent probe/receptor molecule also does not perturb the marked effect on the rate of α-bungarotoxin binding to electroplax membranes exerted by their preincubation with carbamylcholine. This phenomenon, which is analogous to pharmacological desensitization of receptors in synaptic junctions, is fully reversible upon removal of carbamylcholine (Quast, V., Schmerlik, M., Lee, T., Witzemann, V., Blanchard, V. and Raftery, M.A. (1978) Biochemistry 17, 2405–2414). Torpedo electroplax membranes, whether tagged with the covalent probe or freshly isolated, regain the original fast rate of α-bungarotoxin binding upon dilution of carbamylcholine.  相似文献   

5.
A photolabile derivative of α-bungarotoxin which binds specifically to Torpedocalifornica acetylcholine receptor has been used to investigate the topography of the membrane associated protein. It is shown that the toxin can be crosslinked to a polypeptide of 40,000 daltons, to which it is known to bind, and in addition to another polypeptide of 65,000 daltons which is a major constituent of the membrane. The results substantiate the notion that this nicotinic acetylcholine receptor is composed of different polypeptides and that some of these interact with each other or are in close proximity on the exterior surface of the post-synaptic membrane.  相似文献   

6.
The results of a series of experimental studies have culminated in the identification of an acetylcholine receptor from the invertebrate Limulus polyphemus. The binding ligand α-bungarotoxin was used to identify a specific protein in the central nervous system tissue of this organism. The specific interaction of α-bungarotoxin with an acetylcholine receptor has been confirmed by physiological, competitive binding, subcellular fractionation and autoradiographic techniques. The toxin binding protein was solubilized and exhibited properties consistent with the nature of a nicotinic cholinergic receptor. Therefore, the identified protein is proposed as an acetylcholine receptor protein from the central nervous system of this invertebrate species.  相似文献   

7.
Membrane preparations containing essentially only the four polypeptides considered to constitute the acetylcholine receptor are purified from Torpedocalifornica electroplax. Treatment of these membranes with 2% (wv aqueous sodium cholate followed by removal of all insoluble matter results in a solubilized purified receptor preparation that can be reassociated with phospholipids during dialysis to remove the detergent. Such reconstituted receptor is shown to retain the capability of translocating 22Na+ across the membrane in response to carbamylcholine binding in a highly reproducible manner. The dose response for this effect is similar to that observed for the original electroplax membrane preparation and the carbamylcholine induced signal is completely blocked by α-bungarotoxin.  相似文献   

8.
Equilibrium binding studies of the interaction of activators (decamethonium, carbamylcholine) and inhibitors (d-tubocurarine, α-bungarotoxin) of membrane electrical potential changes in electroplax membrane preparations from Electrophorus electricus have been carried out at 4°C, in cel Ringer solution, pH 7.0. The properties of the interaction of these chemical mediators with the membrane-bound receptor appear to be similar to those observed with regulatory enzymes which exhibit an allosteric mechanism involving ligand-induced conformational changes. The data presented here show that activators and inhibitors compete for only one-half the available membrane sites. The experiments also provide additional support for the interpretation of kinetic studies which indicated that electroplax membranes contain two different binding sites, one for activators and one for inhibitors of electrical membrane potential changes.  相似文献   

9.
The minimum reaction mechanism for the irreversible reaction of α-bungarotoxin with membrane preparations of Electrophorus electricus involves a rapid reversible phase (Kdiss = 0.2 μM) followed by an irreversible reaction (k = 0.038 min?1). Compounds which initiate changes in membrane potential of electroplax affect only the rate of reaction but not the binding of toxin to the membrane. d-Tubocurare which inhibits membrane potential changes, as does α-bungarotoxin, is a competitive inhibitor which affects toxin binding but does not affect the rate of reaction. The simplest explanation of this is that membrane potential changes are controlled by two different sites, one for initiators and the other for inhibitors.  相似文献   

10.
Brief exposure to the protein neurotoxin, β-bungarotoxin, is known to disrupt neuromuscular transmission irreversibly by blocking the release of transmitter from the nerve terminal. This neurotoxin also has a phospholipase A2 activity, although phospholipases in general are not very toxic. To determine if the toxicity of this molecule might result from specific binding to neural tissue, we have looked for high affinity, saturable binding using 125I-labeled toxin. At low membrane protein concentration 125I-labeled toxin binding was directly proportional to the amount of membrane; at fixed membrane concentration 125I-labeled toxin showed saturable binding. It was unlikely that iodination markedly changed the toxin's properties since the iodinated toxin had a comparable binding affinity to that of native toxin as judged by competition experiments. Comparison of toxin binding to brain, liver and red blood cell membranes showed that all had high affinity binding sites with dissociation constants between one and two nanomolar. This is comparable to the concentrations previously shown to inhibit mitochondrial function. However, the density of these sites showed marked variation such that the density of sites was 13.0 pmol/mg protein for a brain membrane preparation, 2.4 pmol/mg for liver and 0.25 pmol/mg for red blood cell membranes.In earlier work we had shown that calcium uptake by brain mitochondria is inhibited at much lower toxin concentrations than is liver mitochondrial uptake. Both liver and brain mitochondria bind toxin specifically, but the density of 125I-labeled toxin binding sites on brain mitochondrial prepartions (3.3 ± 0.3 pmol/mg) exceeded by a factor of ten the density on liver mitochondrial preparations (0.3 ± 0.05 pmol/mg). It is also shown that the labeled toxin does not cross synaptosomal membranes, suggesting that mitochondria may not be the site of action of the toxin in vivo. We conclude the β-bungarotoxin is an enzyme which can bind specifically with high affinity to cell membranes.  相似文献   

11.
Antibodies were raised in rabbits against the outer membrane of Neurospora mitochondria. Antibodies were obtained that were specific for this membrane's major polypeptide (M, 31 000) and its slower-migrating derivatives on SDS-polyacrylamide gels. These antibodies inhibited the insertion into phospholipid bilayers of voltage-dependent ion channels from detergent extracts of the mitochondrial outer membranes. The same antibodies bound preferentially to membranes containing crystalline surface arrays in outer mitochondrial membrane fractions. These results indicate that the 31 kDa polypeptide is a component both of the ion channels and of the membrane arrays, suggesting identity between the functional and structural entities.  相似文献   

12.
Rapid efflux of 22Na from within closed vesicles derived from Torpedocalifornica electroplax membranes has been studied as an invitro assay of acetylcholine receptor functionality. The most highly purified membrane preparations contained major polypeptides of M.W. 43 and 90 × 103 daltons in addition to the four peptides characteristic of the acetylcholine receptor (40, 50, 60, 65 × 103 daltons). Removal of these extra peptides by base extraction did not significantly alter the characteristics of carbamylcholine induced 22Na efflux: the agonist dose response curve was similar, preequilibration with agonist caused desensitization, the irreversible antagonist α-Bungarotoxin blocked the efflux and the reversible blockade by the neurotoxin perhydrohistrionicotoxin was also retained. The dose response curve for perhydrohistrionicotoxin corresponded closely to its known binding characteristics for base extracted membranes.  相似文献   

13.
Various enzymes and proteins reagents inhibited [3H]prostaglandin F2α binding to bovine corpus luteum cell membranes. Studies were undertaken (a) to explore further on the dose response relationships with the above agents, (b) to investigate the mechanism of inhibition of binding with respect to receptor affinities and number and (c) to assess whether decreased binding reflected changes in receptors and/or other membrane components.Preincubation of membranes with phoshpolipase A, trypsin, pronase, lipase, tetranitromethane, dinitrofluorobenzene, acetic anhydride and N-ethylmaleimide resulted in moderate to drastic inhibitions of [3H]prostaglandin F2α binding. The dose-dependent inhibition of binding by enzymes, but not by protein reagents (except for N-ethylmaleimide), exhibited a biphasic pattern: at lower concentrations, the loss of binding was low and relatively plateaued, but at higher concentrations, the losses were dramatic. The drastic reduction in binding by trypsin was due to destruction rather than solubilization of receptors from membranes. Phospholipase A was intrinsically more effective than phospholipases C and Ca2+ was not required for its inhibition of [3H]prostaglandin F2α binding. Protein reagents inhibition of binding was differently influenced by added Ca2+ i.e., loss of binding increased with some (N-ethylmaleimide), decreased with others (tetranitromethane, dinitrofluorobenzene and azobenzene sulfenylbromide). These results are interpreted to indicate that Ca2+ induced conformational changes in membranes which may result in exposure of new groups and burying of already exposed modifiable groups.Treatment of membranes wiht trypsin and N-ethylmaleimide selectively abolished high affinity prostaglandin F2α receptors. The low affinity receptors were present but their numbers as well as their affinity were decreased. Lipase, phospholipase A, acetic anhydride, dinitrofluorobenzen and tetranitromethane appear to decrease binding by totally abolishing all prostaglandin F2α receptors or by severely reducing their affinities.The occupancy of receptors by prostaglandin F2α afforded considerable protection against trypsin, phospholipase A, lipase and dinitrofluorobenzene. These data indicated that the inhibition of binding by the above agents, at least in part, can be attributable to changes in receptor sites alone.  相似文献   

14.
The binding of 125I-labeled α-bungarotoxin in the central nervous system of the horseshoe crab, Limulus polyphemus, was investigated. Comparative binding studies in various tissues of L. polyphemus demonstrated a selective association of the toxin with nervous tissues. The greatest enrichment of toxin binding in subcellular fractions of brain tissue was observed in a fraction enriched in mitochondria and acetylcholinesterase-containing membranes. Autoradiographic studies revealed the localization of α-bungarotoxin binding to the longitudinal connectives and neuropile regions of the abdominal ganglia. Three toxin binding components with approximate sedimentation coefficients of 9 S, 15.4 S and 17.4 S were present in solubilized extracts of brain tissue. 125I-labeled α-bungarotoxin binding to these components was inhibited 72%, 47%, 9% and 0% by 10 μM concentrations of (+)-tubocurarine, nicotine, scopolamine and pilocarpine, respectively. The apparent formation of the 15.4 S and 17.4 S proteins from the 9 S protein was obtained. The 15.4 S and 17.4 S components are suggested as aggregates of the 9 S protein. This 9 S protein is proposed as an acetylcholine receptor from the central nervous system of L. polyphemus.  相似文献   

15.
Velocity sedimentation on sucrose gradients containing Torpedo physiological saline has been utilized to fractionate Torpedo (Torpedo californica and T. nobiliana) post-synaptic membranes isolated initially on the basis of their density by equilibrium centrifugation. Membranes are separated into two populations: (1) those retained within the gradient (referred to as gradient pool); and (2) membranes sedimenting rapidly through the gradient (referred to as f 22, fraction 22 of the gradient). Comparison of their polypeptide compositions by sodium dodecyl sulfate/polyacrylamide gel electrophoresis indicates that the gradient pool consists of highly purified nicotinic post-synaptic membranes containing the peptides of the acetylcholine receptor and a peptide of Mr 43 000, while f 22 contains the contaminating membranes present in the initial suspension as well as a small fraction of the nicotinic post-synaptic membranes. On the basis of the kinetics of efflux of 22Na+ from the membrane fractions, it is concluded that the gradient pool contains most of the sealed vesicles with functional nicotinic receptors. The internal volume (μl/mg protein) of those membranes exceeds that of f 22 by a factor of 4, and greater than 85% of that internal volume is equilibrated by the nicotinic agonist carbamylcholine, while for f 22 only 40% is equilibrated. Thin-section electron microscopy has been used to estimate the distribution of vesicle sizes. The observed distribution for the gradient pool indicates that these vesicles are a size homogeneous population of diameter 0.3 μm, while f 22 contains a number of smaller and larger vesicles. Torpedo post-synaptic membranes have been treated with alkali to remove the non-receptor peptide of Mr 43 000. After alkaline extraction, velocity sedimentation permits the isolation of a population of size-homogeneous and well-sealed vesicles containing only the peptides of the nicotinic receptor. It is concluded that upon homogenization, the innervated surface of the Torpedo electroplax tends to form vesicles of uniform size (0.3 μm) which can be readily isolated by velocity sedimentation and that the peptide of Mr 43 000 is not required for the maintenance of bilayer structure.  相似文献   

16.
The amino acid double labeling technique was used to identify and localize membrane-bound lactose operon proteins in E.coli. Both the “M” protein, thought to be the y gene product, and a polypeptide of MW ~15,000 appeared in the membrane following lac operon induction. The amounts of these two proteins were approximately equal.The inner and outer membrane layers of the cell envelope were separated by sucrose density gradient centrifugation or by selective solubilization of inner membranes with the detergent Sarkosyl. When gentle lysis conditions were employed to prepare membrane vesicles, both lac induced proteins fractionated with the inner membrane. However, the “M” protein was more easily randomized in the envelope structure by sonication than the 15,000 dalton component or an inner membrane marker enzyme.  相似文献   

17.
Evidence is presented for the association of a phosphorylase kinase activity with transverse tubules as well as terminal cisternae in triads isolated from rabbit skeletal muscle. This activity remained associated with T-tubules throughout the purification of triad junctions by one cycle of dissociation and reassociation. The possibility that the presence of phosphorylase kinase in these highly purified membrane vesicle preparations was due to its association with glycogen was eliminated by digestion of the latter with α-amylase. The phosphorylase kinase activity associated with the T-tubule membranes was similar to that reported for other membrane-bound phosphorylase kinases. The enzyme had a high pH 6.8pH 8.2 activity ratio (0.4 – 0.7) and a high level of Ca2+ independent activity (EGTACa2+ = 0.3?0.5). The kinase activated and phosphorylated exogenous phosphorylase b with identical time courses. When mechanically disrupted triads were centrifuged on continuous sucrose gradients, the distribution of phosphorylase kinase activity was correlated with the distribution of a Mr 128,000 polypeptide in the gradients. This polypeptide and a Mr 143,000 polypeptide were labeled with 32P by endogenous and exogenous protein kinases. These findings suggest that the membrane-associated phosphorylase kinase may be similar to the cytosolic enzyme. Markers employed for the isolated organelles included a Mr 102,000 membrane polypeptide which followed the distribution of Ca2+-stimulated 3-O-methylfluorescein phosphatase activity, which is specific for the sarcoplasmic reticulum. A Mr 72,000 polypeptide was confirmed to be a T-tubule-specific protein. Several proteins of the triad component organelle were phosphorylated by the endogenous kinase in a Ca2+/calmodulin-stimulated manner, including a Mr ca. 72,000 polypeptide found only in the transverse tubule.  相似文献   

18.
Non-ionic detergents used for the solubilization and purification of acetylcholine receptor from Torpedo californica electroplax may remain tightly bound to this protein. The presence of detergent greatly hinders spectrophotometric and hydrodynamic studies of the receptor protein. β-d-Octylglucopyranoside, however, is found to be effective in solubilizing the receptor from electroplax membranes with minimal interference in the characterization of the protein. The acetylcholine receptor purified from either octylglucopyranoside or Triton X-100-solubilized extracts exhibits identical amino acid compositions, α-Bungarotoxin and (+)-tubocurarine binding parameters, and subunit distributions in SDS-polyacrylamide gels. The use of octylglucopyranoside allows for the assignment of a molar absorptivity for the purified receptor at 280 nm of approx. 530 000 M?1 · cm?1. Additionally, successful reconstitution of octylglucopyranoside-extracted acetylcholine receptor into functional membrane vesicles has recently been achieved (Gonzales-Ros, J.M., Paraschos, A. and Martinez-Carrion, M. (1980) Proc.Natl. Acad. Sci. U.S.A. 77, 1796–1799).Removal of octylglucopyranoside by dialysis does not alter the specific toxin and antagonist binding ability of the receptor or its solubility at low protein concentrations. Sedimentation profiles of the purified acetylcholine receptor in sucrose density gradients reveal several components. Sedimentation coefficients obtained for the slowest sedimenting species agree with previously reported molecular weight values. Additionally, the different sedimenting forms exhibit distinctive behavior in isoelectric focusing gels. Our results suggest that both the concentration and type of detergent greatly influence the physicochemical behavior of the receptor protein.  相似文献   

19.
The involvement of glycoconjugates in the insulin-receptor interactions in mouse liver is tested by digestions of membranes with various enzymes. Trypsin decreased the binding of [125I]insulin to liver membranes. After digestion with β-galactosidase no “high affinity” receptor sites could be detected. The effects observed with plant lectins confirm the involvement of galactoconjugates in the insulin binding process. Sophora japonica and Ricinus communis lectins (with galactose specificity) and concanavalin A largely inhibit the binding process of insulin and those effects concern the “high affinity” receptor sites. Other lectins (wheat germ agglutinin, Dolichos) and enzymes (α-l-fucosidase, β-N-acetyl-hexosaminidase and neuraminidase) are without effect on insulin binding.Comparative studies performed on diabetic mouse liver membrane (KK mice), previously characterized by decreased number of insulin receptors, are in good agreement with qualitatively similar receptor sites in both non-diabetic (control) and diabetic mice. Effects of enzymes and lectins yielded same results as compared to control membranes. Plasma membrane proteins and glycoproteins in both types of mouse are indistinguishable with respect to enzymic and chemical analysis. Sodium dodecyl sulphate acrylamide gel electrophoresis shows identical patterns. Moreover, the decrease in the number of insulin receptors is easily reversed with diet restriction. These data are consistent with the similarity of receptor sites in control and diabetic liver membrane.  相似文献   

20.
Biochemical and electrophysiological studies were conducted on the electric organ of the electric fish of the Nile, Malapteruruselectricus, in order to determine if transmission was chemically mediated. There was no binding of [3H] acetylcholine, [3H] quinuclidinyl benzilate or [3H]-perhydrohistrionicotoxin; but low acetylcholinesterase activity was observed, as was binding of [125I] α-bungarotoxin. The latter binding was detectable at 0.85 ± 0.07 pmol/g tissue, and was totally inhibited by 1 μM α-bungarotoxin or 100 μM d-tubocurarine. A tetrodotoxin-sensitive action potential was measured which was Na+- dependent. Depolarization (30–40 mV) was caused by carbamylcholine, and this was blocked by d-tubocurarine or α-bungarotoxin. The data suggest that this electric organ which may be a rich source for electrically excitable channels, is innervated by nicotonic cholinergic motoneurons, but the concentrations of acetylcholine receptors and acetylcholinesterase are very low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号