首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Quinone and inhibitor binding to Rhodopseudomonas sphaeroides (R-26 and GA) reaction centers were studied using spectroscopic methods and by direct adsorption of reaction centers onto anion exchange filters in the presence of 14C-labelled quinone or inhibitor. These measurements show that as secondary acceptor, QB, ubiquinone (UQ) is tightly bound in the semiquinone form and loosely bound in the quinone and quinol forms. The quinol is probably more loosely bound than the quinone. o-Phenanthroline and terbutryn, a triazine inhibitor, compete with UQ and with each other for binding to the reaction center. Inhibition by o-phenanthroline of electron transfer from the primary to the secondary quinone acceptor (QA to QB) occurs via displacement of UQ from the QB binding site. Displacement of UQ by terbutryn is apparently accessory to the inhibition of electron transfer. Terbutryn binding is lowered by reduction of QB to Q?B but is practically unaffected by reduction of QA to Q?A in the absence of QB. UQ-9 and UQ-10 have a 5- to 6-fold higher binding affinity to the QB site than does UQ-1, indicating that the long isoprenoid chain facilitates the binding to the QB site.  相似文献   

2.
David M. Tiede  P.L. Dutton 《BBA》1981,637(2):278-290
The orientation of the reaction center bacteriochlorophyll dimer, (BChl)2, and primary quinone, QI, has been studied by EPR in chromatophores of Rhodopseudomonas sphaeroides R26 and Chromatium vinosum and in the reconstituted membrane multilayers of the isolated Rps. sphaeroides reaction center protein. The similarity in the angular dependence of the (BChl)2 triplet and QI?Fe2+ signals in the chromatophore and reconstituted reaction center membrane multilayers indicates that the reaction center is similarly oriented in both native and model membranes. The principle magnetic axes of the (BChl)2 triplet are found to lie with the x direction approximately parallel to the plane of the membrane surface, and the z and y directions approx. 10–20° away from the plane of the membrane surface and membrane normal, respectively. The QI?Fe2+ signals are found to have the g 1.82 component positioned perpendicular to the plane of the membrane surface, with an orthogonal low-field transition (at g 1.68 in Rps. Sphaeroides and at g 1.62 in C. vinosum) lying parallel to the plane of the membrane surface. The orientation of QI was determined by the angular dependence of this signal in Fe2+-depleted reaction center reconstituted membrane multilayers, and it was found to be situated most likely with the plane of the quinone ring perpendicular to the plane of the membrane surface.  相似文献   

3.
《BBA》1987,890(2):169-178
A new EPR signal is reported in Rhodospirillum rubrum chromatophores. The signal is attributed to QBFe2+, the semiquinone-iron complex of the secondary quinone electron acceptor, on the basis of the following observations. (1) It is induced by a single laser flash given a room temperature and is stable. (2) It is present after odd-numbered flashes and absent after even-numbered flashes when a series of flashes is given. (3) When it is already present, low-temperature illumination results in the disappearance of the signal due to formation of the QAFe2+QB state. (4) Its formation is inhibited by the presence of orthophenanthroline at normal values of pH. The QBFe2+ signal has two main features, one at g = 1.93 and the other at g = 1.82. The two features have different microwave power and temperature dependences, with the g = 1.82 signal being more difficult to saturate and requiring lower temperatures to be observable. Raising the pH leads to an increase in the g = 1.82 feature, while the g = 1.93 signal decreases in amplitude. It is suggested that the two parts of the signal may represent two EPR forms due to structural heterogeneity. The low-field feature of the QBFe2+ signal shifts to lower field as the pH is raised and a pK for this change seems to occur at pH 9.4. The QAFe2+ signal at g = 1.88 also shifts as the pH is increased; however, the shift is less marked than that seen for QBFe2+, the shift is to higher field and the range over which it occurs is wider and depends upon the temperature of QAFe2+ formation. This effect may be due to a pK on a protein group being shifted to higher pH by the presence of QA. ortho-Phenanthroline broadens and shifts the QAFe2+ signal. The inhibition of electron transfer between QA and QB by ortho-phenanthroline becomes less effective at high pH. The new QBFe2+ signal is unlike other semiquinone-iron signals reported in the literature in bacteria; however, it is remarkably similar to the QBFe2+ signal reported in Photosystem II.  相似文献   

4.
D. Kleinfeld  M.Y. Okamura  G. Feher 《BBA》1984,766(1):126-140
The electron-transfer reactions and thermodynamic equilibria involving the quinone acceptor complex in bacterial reaction centers from R. sphaeroides were investigated. The reactions are described by the scheme: We found that the charge recombination pathway of D+QAQ?B proceeds via the intermediate state D+Q?AQB, the direct pathway contributing less than approx. 5% to the observed recombination rate. The method used to obtain this result was based on a comparison of the kinetics predicted for the indirect pathway (given by the product kAD-times the fraction of reaction centers in the Q?AQB state) with the observed recombination rate, kobsD+ →D. The kinetic measurements were used to obtain the pH dependence (6.1 ? pH ? 11.7) of the free energy difference between the states Q?AQB and QAQ?B. At low pH (less than 9) QAQ?B is stabilized relative to Q?AQB by 67 meV, whereas at high pH Q?AQB is energetically favored. Both Q?A and Q?B associate with a proton, with pK values of 9.8 and 11.3, respectively. The stronger interaction of the proton with Q?B provides the driving force for the forward electron transfer.  相似文献   

5.
6.
The suggestion that the electron acceptor A1 in plant photosystem I (PSI) is a quinone molecule is tested by comparisons with the bacterial photosystem. The electron spin polarized (ESP) EPR signal due to the oxidized donor and reduced quinone acceptor (P 870 + Q-) in iron-depleted bacterial reaction centers has similar spectral characteristics as the ESP EPR signal in PSI which is believed to be due to P 700 + A 1 - , the oxidized PSI donor and reduced A1. This is also true for better resolved spectra obtained at K-band (24 GHz). These same spectral characteristics can be simulated using a powder spectrum based on the known g-anisotropy of reduced quinones and with the same parameter set for Q- and A1 -. The best resolution of the ESP EPR signal has been obtained for deuterated PSI particles at K-band. Simulation of the A1 - contribution based on g-anisotropy yields the same parameters as for bacterial Q- (except for an overall shift in the anisotropic g-factors, which have previously been determined for Q-). These results provide evidence that A1 is a quinone molecule. The electron spin polarized signal of P700 + is part of the better resolved spectrum from the deuterated PSI particles. The nature of the P700 + ESP is not clear; however, it appears that it does not exhibit the polarization pattern required by mechanisms which have been used so far to explain the ESP in PSI.Abbreviations hf hyperfine - A0 A0 acceptor of photosystem I - A1 A1 acceptor of photosystem I - Brij-58 polyoxyethylene 20 cetyl ether - CP1 photosystem I particles which lack ferridoxin acceptors - ESP electron spin polarized - EPR electron paramagnetic resonance - I intermediary electron acceptor, bacteriopheophytin - LDAO lauryldimethylamine - N-oxide, P700 primary electron donor of photosystem I - PSI photosystem I - P700 T triplet state of primary donor of photosystem I - P870 primary donor in R. sphaeroides reaction center - Q quinore-acceptor in photosynthetic bacteria - RC reaction center  相似文献   

7.
Hiroyuki Arata  Mitsuo Nishimura 《BBA》1983,725(2):394-401
Delayed fluorescence of chromatophores of Rhodopseudomonas sphaeroides was measured to estimate the standard free energy change accompanying the electron transfer from the bacteriochlorophyll dimer (P) to the primary acceptor quinone (QA). The chromatophores emitted delayed fluorescence with a lifetime of about 60 ms in the presence of o-phenanthroline. By comparing the intensity of the delayed fluorescence with that of the prompt fluorescence, the standard free energy of the P+QA? radical pair was evaluated. It was about 0.87 eV below the level of excited singlet state, P1QA, or 0.51 eV above the ground state, PQA, independent of pH.  相似文献   

8.
Non-heme iron is a conservative component of type II photosynthetic reaction centers of unknown function. We found that in the reaction center from Rba. sphaeroides it exists in two forms, high and low spin ferrous states, whereas in Rsp. rubrum mostly in a low spin state, in line with our earlier finding of its low spin state in the algal photosystem II reaction center (Burda et al., 2003). The temperature dependence of the non-heme iron displacement studied by Mössbauer spectroscopy shows that the surrounding of the high spin iron is more flexible (Debye temperature ~ 165 K) than that of the low spin atom (~ 207 K). Nuclear inelastic scattering measurements of the collective motions in the Rba. sphaeroides reaction center show that the density of vibrational states, originating from non-heme iron, has well-separated modes between lower (4-17 meV) and higher (17-25 meV) energies while in the one from Rsp. rubrum its distribution is more uniform with only little contribution of low energy (~ 6 meV) vibrations. It is the first experimental evidence that the fluctuations of the protein matrix in type II reaction center are correlated to the spin state of non-heme iron. We propose a simple mechanism in which the spin state of non-heme iron directly determines the strength of coupling between the two quinone acceptors (QA and QB) and fast collective motions of protein matrix that play a crucial role in activation and regulation of the electron and proton transfer between these two quinones. We suggest that hydrogen bond network on the acceptor side of reaction center is responsible for stabilization of non-heme iron in different spin states.  相似文献   

9.
Bruce A. Diner  René Delosme 《BBA》1983,722(3):452-459
Redox titrations of the flash-induced formation of C550 (a linear indicator of Q?) were performed between pH 5.9 and 8.3 in Chlamydomonas Photosystem II particles lacking the secondary electron acceptor, B. One-third of the reaction centers show a pH-dependent midpoint potential (Em,7.5) = ? 30 mV) for redox couple QQ?, which varies by ?60 mV/pH unit. Two-thirds of the centers show a pH-independent midpoint potential (Emm = + 10 mV) for this couple. The elevated pH-independent Em suggests that in the latter centers the environment of Q has been modified such as to stabilize the semiquinone anion, Q?. The midpoint potentials of the centers having a pH-dependent Em are within 20 mV of those observed in chloroplasts having a secondary electron acceptor. It appears therefore that the secondary electron acceptor exerts little influence on the Em of QQ?. An EPR signal at g 1.82 has recently been attributed to a semiquinone-iron complex which comprises Q?. The similar redox behavior reported here for C550 and reported by others (Evans, M.C.W., Nugent, J.H.A., Tilling, L.A. and Atkinson, Y.E. (1982) FEBS Lett. 145, 176–178) for the g 1.82 signal in similar Photosystem II particles confirm the assignment of this EPR signal to Q?. At below ?200 mV, illumination of the Photosystem II particles produces an accumulation of reduced pheophytin (Ph?). At ?420 mV Ph? appears with a quantum yield of 0.006–0.01 which in this material implies a lifetime of 30–100 ns for the radical pair P-680+Ph?.  相似文献   

10.
A.W. Rutherford  J.L. Zimmermann 《BBA》1984,767(1):168-175
A study of signals, light-induced at 77 K in O2-evolving Photosystem II (PS II) membranes showed that the EPR signal that has been attributed to the semiquinone-iron form of the primary quinone acceptor, Q?AFe, at g = 1.82 was usually accompanied by a broad signal at g = 1.90. In some preparations, the usual g = 1.82 signal was almost completely absent, while the intensity of the g = 1.90 signal was significantly increased. The g = 1.90 signal is attributed to a second EPR form of the primary semiquinone-iron acceptor of PS II on the basis of the following evidence. (1) The signal is chemically and photochemically induced under the same conditions as the usual g = 1.82 signal. (2) The extent of the signal induced by the addition of chemical reducing agents is the same as that photochemically induced by illumination at 77 K. (3) When the g = 1.82 signal is absent and instead the g = 1.90 signal is present, illumination at 200 K of a sample containing a reducing agent results in formation of the characteristic split pheophytin? signal, which is thought to arise from an interaction between the photoreduced pheophytin acceptor and the semiquinone-iron complex. (4) Both the g = 1.82 and g = 1.90 signals disappear when illumination is given at room temperature in the presence of a reducing agent. This is thought to be due to a reduction of the semiquinone to the nonparamagnetic quinol form. (5) Both the g = 1.90 and g = 1.82 signals are affected by herbicides which block electron transfer between the primary and secondary quinone acceptors. It was found that increasing the pH results in an increase of the g = 1.90 form, while lowering the pH favours the g = 1.82 form. The change from the g = 1.82 form to the g = 1.90 form is accompanied by a splitting change in the split pheophytin? signal from approx. 42 to approx. 50 G. Results using chloroplasts suggest that the g = 1.90 signal could represent the form present in vivo.  相似文献   

11.
Measurements of chlorophyll fluorescence have been used to monitor electron transport from the primary electron acceptor of photosystem II, Q, to the secondary acceptor, B, in chloroplasts in either the presence or the absence of the plastoquinone analog 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). Electron transport is markedly slower from Q? to either B or B? in the presence of DBMIB. Binary oscillations in the rate of reoxidation of Q? (equivalent to the reactions Q?B → QB? and Q?B? → QB2?) after each of a series of flashes were of a phase opposite to those observed in the absence of DBMIB (J. M. Bowes, and A. R. Crofts, (1980) Biochim. Biophys. Acta590, 573–584). The results confirm that inhibition of electron transport by DBMIB in chloroplasts is not restricted to an inhibition of electron transfer from the plastoquinone pool, but that there is also a specific interaction between the reduced form of the inhibitor and the secondary electron acceptor B. Models are discussed to account for the mechanism of this interaction.  相似文献   

12.
The temperature dependences of the P870+Q?A → P870QA and P870+Q?B → P870QB recombination reactions were measured in reaction centers from Rhodopseudomonas sphaeroides. The data indicate that the P870+Q?B state decays by thermal repopulation of the P870+Q?A state, followed by recombination. ΔG° for the P870+Q?A → P870+Q?B reaction is ?6.89 kJ · mol?1, while ΔH° = ?14.45 kJ · mol?1 and ?TΔS° = + 7.53 kJ · mol?1. The activation ethalpy, H3, for the P870+Q?A Δ P870+Q?B reaction is +56.9 kJ · mol?1, while the activation entropy is near zero. The results permit an estimate of the shape of the potential energy curve for the P870+Q?A → P870+Q?B electron transfer reaction.  相似文献   

13.
Ca2+ and Cl? ions are essential elements for the oxygen evolution activity of photosystem II (PSII). It has been demonstrated that these ions can be exchanged with Sr2+ and Br?, respectively, and that these ion exchanges modify the kinetics of some electron transfer reactions at the Mn4Ca cluster level (Ishida et al., J. Biol. Chem. 283 (2008) 13330–13340). It has been proposed from thermoluminescence experiments that the kinetic effects arise, at least in part, from a decrease in the free energy level of the Mn4Ca cluster in the S3 state though some changes on the acceptor side were also observed. Therefore, in the present work, by using thin-layer cell spectroelectrochemistry, the effects of the Ca2+/Sr2+ and Cl?/Br? exchanges on the redox potential of the primary quinone electron acceptor QA, Em(QA/QA?), were investigated. Since the previous studies on the Ca2+/Sr2+ and Cl?/Br? exchanges were performed in PsbA3-containing PSII purified from the thermophilic cyanobacterium Thermosynechococcus elongatus, we first investigated the influences of the PsbA1/PsbA3 exchange on Em(QA/QA?). Here we show that i) the Em(QA/QA?) was up-shifted by ca. + 38 mV in PsbA3-PSII when compared to PsbA1-PSII and ii) the Ca2+/Sr2+ exchange up-shifted the Em(QA/QA?) by ca. + 27 mV, whereas the Cl?/Br? exchange hardly influenced Em(QA/QA?). On the basis of the results of Em(QA/QA?) together with previous thermoluminescence measurements, the ion-exchange effects on the energetics in PSII are discussed.  相似文献   

14.
《BBA》1987,892(3):275-283
Electron-transfer reactions and triplet decay rates have been studied at pressures up to 300 MPa. In reaction centers from Rhodobacter sphaeroides R-26, high pressure hastened the electron transfers from both the primary and secondary quinones (QA and QB) to the primary electron donor bacteriochlorophyll, P. Motion of QA between two sites, one nearer to P and the other nearer to QB, could account for these pressure effects. In reaction centers from Rhodopseudomonas viridis, charge recombination was slowed by high pressure. Decay rates were also studied for the triplet state, PR. In Rb. sphaeroides R-26 with QA reduced with Na2S2O4, the decay was hastened by pressure. This could be explained if PR decays through a charge-transfer triplet state, or if the decay kinetics of PR are sensitive to the distance between P and QA. In Rps. viridis reaction centers, and in Rb. sphaeroides reaction centers that were depleted of QA, the lifetime of PR was not altered by pressure.  相似文献   

15.
C.A. Wraight 《BBA》1979,548(2):309-327
The photoreduction of ubiquinone in the electron acceptor complex (Q1Q11) of photosynthetic reaction centers from Rhodopseudomonas sphaeroides, R26, was studied in a series of short, saturating flashes. The specific involvement of H+ in the reduction was revealed by the pH dependence of the electron transfer events and by net H+ binding during the formation of ubiquinol, which requires two turnovers of the photochemical act. On the first flash Q11 receives an electron via Q1 to form a stable ubisemiquinone anion (Q??11); the second flash generates Q??1. At low pH the two semiquinones rapidly disproportionate with the uptake of 2 H+, to produce Q11H2. This yields out-of-phase binary oscillations for the formation of anionic semiquinone and for H+ uptake. Above pH 6 there is a progressive increase in H+ binding on the first flash and an equivalent decrease in binding on the second flash until, at about pH 9.5, the extent of H+ binding is the same on all flashes. The semiquinone oscillations, however, are undiminished up to pH 9. It is suggested that a non-chromophoric, acid-base group undergoes a pK shift in response to the appearance of the anionic semiquinone and that this group is the site of protonation on the first flash. The acid-base group, which may be in the reaction center protein, appears to be subsequently involved in the protonation events leading to fully reduced ubiquinol. The other proton in the two electron reduction of ubiquinone is always taken up on the second flash and is bound directly to Q??11. At pH values above 8.0, it is rate limiting for the disproportionation and the kinetics, which are diffusion controlled, are properly responsive to the prevailing pH. Below pH 8, however, a further step in the reaction mechanism was shown to be rate limiting for both H+ binding electron transfer following the second flash.  相似文献   

16.
For a model system consisting of a bacteriochlorophyll dimer (P) and a primary quinone with the nearest environment (QA), which are the electron donor and acceptor in the recombination reaction in the Rhodobacter spheroides reaction center, the energies of states P+Q A ? and PQA have been calculated at several stable conformations of QA that differ in the positions of the proton involved in the hydrogen bond. It is shown that the position of the proton has a considerable influence on the energy of vertical transition P+Q A ? → PQA.  相似文献   

17.
Tenuazonic acid (TeA) is a putative phytotoxin obtained from Alternaria alternata, the organism that can cause brown leaf spot disease of Crofton weed (Eupatorium adenophorum). It is demonstrated here that the tenuazonic acid inhibits the activity of photosystem II (PSII); the I50-value is 48 μg mL?1. Evidences from chlorophyll fluorescence show that tenuazonic acid interrupts electron transport between QA and QB on the acceptor side of PSII. It does not have an effect on the antenna pigments, the oxygen-evolving complex (OEC) at the donor side of PSII. On the basis of the fluorescence induction kinetics and competition experiments with [14C]atrazine, it is shown that tenuazonic acid does not share the same binding environment with atrazine despite their common action target: the QB-site. It is concluded that tenuazonic acid is a member of a novel class of PSII inhibitors.  相似文献   

18.
Magnetic fields influence two properties of the P-870 triplet state observed in Rps. sphaeroides reaction centers: the yield of formation and the kinetics of decay. These effects have been studied in reaction centers which were prepared in three different states: state QA , state QA 2– and state (– QA) (QA depleted). The triplet yields decrease with increasing magnetic fields, with B1/2's of about 140, 41 and 57 Gauss, respectively. The half-time of 3P-870 decay is not influenced by the field in state QA ; it increases at increasing fields, in state QA 2– and state (– QA), with the same B1/2 as the triplet yield. These results are discussed in the framework of current theories of the radical-pair dynamics and of the mechanism of triplet decay.Abbreviations I primary electron acceptor - LDAO lauryldimethylamine oxide - P-870 primary electron donor - QA first quinone acceptor - SDS sodium dodecylsulfate - YAG Yttrium Aluminum Garnet  相似文献   

19.
《BBA》2019,1860(12):148082
Redox titration using fluorescence measurements of photosystem II (PSII) has long shown that impairment of the water-oxidizing Mn4CaO5 cluster upshifts the redox potential (Em) of the primary quinone electron acceptor QA by more than 100 mV, which has been proposed as a photoprotection mechanism of PSII. However, the molecular mechanism of this long-distance interaction between the Mn4CaO5 cluster and QA in PSII remains unresolved. In this study, we reinvestigated the effect of depletion of the Mn4CaO5 cluster on Em(QA/QA) using Fourier transform infrared (FTIR) spectroelectrochemistry, which can directly monitor the redox state of QA at an intended potential. Light-induced FTIR difference measurements at a series of electrode potentials for intact and Mn-depleted PSII preparations from spinach and Thermosynechococcus elongatus showed that depletion of the Mn4CaO5 cluster hardly affected the Em(QA/QA) values. In contrast, fluorescence spectroelectrochemical measurement using the same PSII sample, electrochemical cell, and redox mediators reproduced a large upshift of apparent Em upon Mn depletion, whereas a smaller shift was observed when weaker visible light was used for fluorescence excitation. Thus, the possibility was suggested that the measuring light for fluorescence disturbed the titration curve in Mn-depleted PSII, in contrast to no interference of infrared light with the PSII reactions in FTIR measurements. From these results, it was concluded that the Mn4CaO5 cluster does not directly regulate Em(QA/QA) to control the redox reactions on the electron acceptor side of PSII.  相似文献   

20.
Hiroshi Ishikita 《BBA》2007,1767(11):1300-1309
In bacterial photosynthetic reaction centers (bRC), the electron is transferred from the special pair (P) via accessory bacteriochlorophyll (BA), bacteriopheopytin (HA), the primary quinone (QA) to the secondary quinone (QB). Although the non-heme iron complex (Fe complex) is located between QA and QB, it was generally supposed not to be redox-active. Involvement of the Fe complex in electron transfer (ET) was proposed in recent FTIR studies [A. Remy and K. Gerwert, Coupling of light-induced electron transfer to proton uptake in photosynthesis, Nat. Struct. Biol. 10 (2003) 637-644]. However, other FTIR studies resulted in opposite results [J. Breton, Steady-state FTIR spectra of the photoreduction of QA and QB in Rhodobacter sphaeroides reaction centers provide evidence against the presence of a proposed transient electron acceptor X between the two quinones, Biochemistry 46 (2007) 4459-4465]. In this study, we calculated redox potentials of QA/B (Em(QA/B)) and the Fe complex (Em(Fe)) based on crystal structure of the wild-type bRC (WT-bRC), and we investigated the energetics of the system where the Fe complex is assumed to be involved in the ET. Em(Fe) in WT-bRC is much less pH-dependent than that in PSII. In WT-bRC, we observed significant coupling of ET with Glu-L212 protonation upon oxidation of the Fe complex and a dramatic Em(Fe) downshift by 230 mV upon formation of QA (but not QB) due to the absence of proton uptake of Glu-L212. Changes in net charges of the His ligands of the Fe complex appear to be the nature of the redox event if we assume the involvement of the Fe complex in the ET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号