首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Changes in neutral amino acid transport activity caused by addition of phytohaemagglutinin-P to quiescent peripheral pig lymphocytes have been evaluated by measurements of 14C-labelled neutral and analogue amino acids under conditions approaching initial entry rates. Utilizing methylaminoisobutyric acid, the best model substrate of System A, we confirmed our previous report (Borghetti, A.F., Kay, J.E. and Wheeler, K.P. (1979) Biochem. J. 182, 27–32) on the absence of this transport system in quiescent cells and its emergence following stimulation. Furthermore, we demonstrated the presence in quiescent cells of an Na+-dependent transport system for neutral amino acids that has been characterized as System ASC by several criteria including intolerance to methylaminoisobutyric acid, strict Na+-dependence, the property of transtimulation and specificity for pertinent substrates such as alanine, serine, cysteine and threonine. Analysis of the relationship between influx and substrate concentration revealed that two independent saturable components contribute to entry of alanine in quiescent cells: a low affinity (Km = ≈4 mM) and a high affinity (Km = ≈0.2 mM) component. The high affinity component could be inhibited in a competitive way by serine, cysteine and threonine, but methylaminoisobutyric acid did not change appreciably its constants. The enhanced activity of alanine transport through the ASC system observed in activated cells resulted from a large increase in the capacity (V) of the high affinity component without any substantial change in the apparent affinity constant (Km).  相似文献   

2.
The active transport of neutral amino acids into Streptomyces hydrogenans is inhibited by external Na+. There is no indication that in these cells amino acid accumulation is driven by an inward gradient of Na+. The extent of transport inhibition by Na+ depends on the nature of the amino acid. It decreases with increasing chain length of the amino acid molecules i.e. with increasing non-polar properties of the side chain. Kinetic studies show that Na+ competes with the amino acid for a binding site at the amino acid carrier. There is a close relation between the Ki values for Na+ and the number of C atoms of the amino acids. Other cations also inhibit neutral amino acid uptake competitively; the effectiveness decreases in the order Li+ > Na+ > K+ > Rb+ > Cs+. Anions do not have a significant effect on the uptake of neutral amino acids. After prolonged incubation of the cells with 150 mM Na+, in addition to the competitive inhibition of transport Na+ induces an increase in membrane permeability for amino acids.  相似文献   

3.
The stoichiometry of Na coupling to amino acid movement across the brush border membrane of the rabbit distal ileum has been determined under initial rate conditions.The coupling ratio, defined as the amino acid-dependent Na influx/the Na-dependent amino acid influx, was equal to unity for alanine, measured over a 10-fold range of Na and alanine concentrations. Coupling ratio values determined under a single set of conditions for a number of amino acids varied from 1 for serine to 4.6 for methionine. Reducing the methionine concentration from 12.5 to 1.5 mM caused the coupling ratio value to fall from 4.6 to 1.2.These results are explained by assuming a fixed stoichiometry of 1 : 1 under all conditions, with initial binding of the amino acid (A) to the Na-dependent carrier (E) but with some amino acids being able to cross on the Na-dependent carrier in the absence of Na.The variation in coupling ratio values can be used to calculate KA, the apparent dissociation constant of amino acid from the Na-dependent carrier in the absence of Na, and the ratio k1k2, where k1 and k2 are first-order rate constants for translocation of the complexes EA and EANa, respectively. This method of processing results has been defined as delta analysis. The value of KA for methionine is 3.6 ± 1.1 mM and the k1k2 ratio is 1.01 ± 0.07. The constant coupling ratio value of 1 for alanine indicates that the value for KA is extremely high or that the k1 value is extremely low.  相似文献   

4.
Klebsiella pneumoniae can accumulate methylammonium up to 80-fold by means of a transport system as indicated by the energy requirement, saturation kinetics and a narrow pH profile around pH 6.8. Methylammonium transport (apparent Km = 100 μM, V = 40 μmol/min per g dry weight at 15°C) is competitively inhibited by ammonium (apparent Ki = 7 μM). The low Ki value and the finding that methylammonium cannot serve as a nitrogen source indicate that ammonium rather than methylammonium is the natural substrate. Uphill transport is driven by a component of the protonmotive force, probably the membrane potential. The transport system is under genetic control; it is partially repressed by amino acids and completely by ammonium. Analysis of mutants suggest that the synthesis of the ammonium transport system is subject to the same ‘nitrogen control’ as nitrogenase and glutamine synthetase.  相似文献   

5.
The transport of [14C]Gly-Pro was examined using a mutant of Salmonella typhimurium (strain TN87) deficient in an X-Pro dipeptidase and an X-Pro-Y iminopeptidase. The dipeptide was taken up by one saturable transport system having a Km of 5.3 · 10?7M and a V of 1.4 nmol/mg dry wt cell per min. The uptake of Gly-Pro was not inhibited by amino acids or tripeptides and the transport system exhibited a rather broad side chain specificity for dipeptides. Dipeptides containing hydrophobic residues were the most potent inhibitors of this dipeptide transport system exhibiting Ki values between 10?8 and 10?7 M. In contrast, dipeptides containing glycine residues were particularly weak inhibitors. Finally, Gly-Pro was found to be in the intact form inside the cell and was concentrated more than 1000-fold.  相似文献   

6.
7.
Cells depleted of amino acids show lower rates of glycine or aminoisobutyric acid uptake than do freshly isolated cells. In the amino acid-depleted cells, addition of valinomycin stimulates amino acid influx at least to the level observed in freshly isolated cells. In cells containing high levels of cellular amino acids, valinomycin has little effect on influx of amino acids. It is concluded that the transport of amino acids in freshly isolated cells is elevated compared to depleted cells because the cells are hyperpolarized by the continuous loss of cellular amino acids during the transport assay. During this hyperpolarization by amino acid loss, transport of amino acids is not further stimulated by valinomycin at low external [K+] (10 mM ± 5 mM).With the exception of preloading with glycine, cells preloaded with a single amino acid to a concentration greater than 20 mM show reduced rates of glycine and aminoisobutyric acid influx at early times (less than 15 min) compared to amino acid-depleted cells. The reduction of infiux is transient and by 30 min, influx is greater in preloaded than in amino acid-depleted cells.Knowing that increases and decreases in the membrane potential are achieved by using varying external [K+] in the presence of valinomycin and propranolol, and using amino acid-depleted cells, it can be shown that an increased membrane potential increases the V for glycine and aminoisobutyric acid influx. A decrease in the potential difference results in a decreased V. Changes in Km also occur when the membrane potential is varied.  相似文献   

8.
Sulfate uptake by Saccharomyces cerevisiae is stimulated about 12-fold by preincubation of cells with 1% d-glucose or 1% ethanol. The KT remains unchanged (0.34–0.38 mM), the Jmar increase from 18–20 to 195–230 and 170–185 nmol/min per g dry wt., respectively, after glucose and ethanol preincubation. The stimulation involves protein synthesis (it is suppressed by cycloheximide), has a half-time of 18 min and requires mitochondrial respiration (no or low effect in respiration-deficient mutants and those lacking ADP-ATP transport in mitochondria, as well as after anaerobic preincubation of the wild-type strain, and in low-phosphate cells). The presence of NH4+ and some amino acids (e.g., leucine, aspartate, cysteine and methionine) depressed the stimulation while that of cationic amino acids (typically arginine and lysine) and of K+ increased it by 50–80%. The stimulated (i.e., newly synthesized) transport system was degraded with a half-life of about 10 min.  相似文献   

9.
Two membrane fractions prepared from the Ehrlich ascites-tumor cell show non-identical stimulatory responses to certain amino acids in their Mg2+-dependent activity to cleave ATP, despite the presence of ouabain and the absence of Na+ or K+. The first of these, previously described, shows little (Na+ + K+)-ATPase activity, and is characteristically stimulated by the presence of certain diamino acids with low pK2, and at pH values suggesting that the cationic forms of these amino acids are effective. The evidence indicates that these effects are not obtained through occupation of the kinetically discernible receptor site serving characteristically for the uphill transport of these amino acids into the Ehrlich cell. The second membrane preparation was purified with the goal of concentrating the (Na+ + K+)-ATPase activity. It also is stimulated by the model diamino acid, 4-amino-1-methylpiperidine-4-carboxylic acid, and several ordinary amino acids. The diamino acids were most effective at pH values where the neutral zwitterionic forms might be responsible. Among the optically active amino acids tested, the effects of ornithine and leucine were substantially stronger for the l than for d isomers. The list of stimulatory amino acids again corresponds poorly to any single transport system, although the possibility was not excluded that stimulation might occur for both preparations by occupation of a membrane site which ordinarily is kinetically silent in the transport sequence. The high sensitivity to deoxycholate and to dicyclohexylcarbodiimide of the hydrolytic activity produced by the presence of l-ornithine and 4-amino-1-methyl-piperidine-4-carboxylic acid suggests that the stimulatory effect is not merely a general intensification of the background Mg+-dependent hydrolytic activity.  相似文献   

10.
11.
The Michaelis-Menten parameters, JM and Km of the initial 1-min fluxes of uptake of l-phenylalanine and of α-aminoisobutyric acid were determined for extracellular concentrations of Na+ ranging from 0.5 to 110 mequiv/l for Ehrlich ascites tumor cells. The maximal initial flux, JM, decreased with decrease in extracellular Na+ for both α-aminoisobutyric acid and phenylalanine but the Km for α-aminoisobutyric acid increased markedly as the Na+ concentration fell whereas the Km for phenylalanine decreased. Cycloleucine behaved like phenylalanine.The data provides strong evidence that the Na+-independent flux of phenylalanine is an exchange diffusion flux that can be varied by changing the intracellular level of amino acids such as phenylalanine. For phenylalanine, cyclolcucine, and methionine this exchange diffusion flux appears to be additive with the Na+-dependent initial flux. α-Aminoisobutyric acid also has an exchange diffusion that is Na+-independent but it has a high Km and is not additive with the Na+-dependent flux.  相似文献   

12.
The renal clearance of amino acids was measured in canine pups between 5 days and 12 weeks of age. The reabsorption of glycine was incomplete at 5 and 21 days, indicating a physiologic aminoaciduria of immaturity. An adult pattern of 97–100% reabsorption appeared by 8 weeks of age. The uptake of glycine by isolated renal tubules from 5-day-old, 3-month-old and adult dogs was examined towards an understanding of the events underlying this aminoaciduria. The initial uptake of 0.042 mM glycine by isolated tubules from the newborn was lower than that of the adult, but after 30 min of incubation the newborn surpassed the adult. A steady state of uptake was not achieved by the newborn even after 90 min of incubation, while it was achieved in the adult after 30 min. The uptake by the 3-month-old tubules resembled the adult at the early time points and the newborn at later points. With 1.032 mM glycine, a similar relationship of uptake between adult and newborn tubules was found, except with this concentration, the uptake by both the newborn and adult tubules reached a steady state. The concentration dependence of glycine uptake showed two saturable transport systems with similar apparent Km and Vmax values after 30 min of incubation for all three age groups. Determination of glycine flux by compartmental analysis revealed decreased influx and efflux in the newborn, but with a greater decrease in efflux, compared to adult. These changes of influx and efflux which accompany renal tubule maturation could contribute to the increased intracellular amino acid levels and decreased reabsorption of amino acids seen in the immature dog.  相似文献   

13.
Corneas were mounted in flux chambers and endothelial bicarbonate fluxes were determined following sensitization of endothelial cells with 5 · 10?6 M rose bengal and exposure to light. Corneas exposed to light demonstrated an increased passive bicarbonate flux compared to corneas not photosensitized. Active bicarbonate flux was reduced after 5 min of light exposure, but not after 1 min of light exposure. The increase in passive bicarbonate flux was prevented by the addition of 200 μg/ml catalase to the bathing solution; however, catalase had no effect on the photodynamic alteration of active flux. Neither 10 mM ascorbic acid nor 1.012 g/l glutathione prevented the photodynamically induced increase in passive flux. Perfusion of corneas with 5 · 10?6 M rose bengal dissolved in a sucrose-substituted Krebs-Ringer bicarbonate solution with a po2 of 124 ± 4.0 mmHg and exposed to light swelled at rates more rapid than corneas treated in a similar fashion but perfused with a solution with a Po2 of 20 ± 4.6 mmHg. This study demonstrates that photodynamically induced corneal endothelial cell alteration results in increased passive bicarbonate flux, a time-dependent decrease in active bicarbonate flux, is oxygen dependent, and is at least in part secondary to H2O2 produced by the dismutation reaction of the superoxide free radical.  相似文献   

14.
The uptake of d-glucose, 2-aminoisobutyric acid and glycine was studied with intestinal brush border membrane vesicles of a marine herbivorous fish: Boops salpa. The uptake of these three substances is stimulated by an Na+ electrochemical gradient (CoutCin). For glucose, an increase of the electrical membrane potential generated by a concentration gradient of the liposoluble anion, SCN?, increases the Na+-dependent transport. This responsiveness to the membrane potential was confirmed by valinomycin. Differently from glucose, uptake of glycine and 2-aminoisobutyric acid requires, besides the Na+ gradient, the presence of Cl? on the external side of the vesicles. In the absence of Cl?, amino acid uptake is not stimulated by the Na+ gradient and is not influenced by an electrical membrane potential generated by SCN? gradient (Cout>Cin) or by a K+ diffusion potential (Cin>Cout). This Cl? requirement differs from the Na+ requirement, since a Cl? gradient (Cout>Cin) does not result in an accumulation of glycine or 2-aminoisobutyric acid similar to that produced by an Na+ gradient.  相似文献   

15.
The transport of sucrose by selected mutant and wild-type cells of Streptococcus mutans was studied using washed cocci harvested at appropriate phases of growth, incubated in the presence of fluoride and appropriately labelled substrates. The rapid sucrose uptake observed cannot be ascribed to possible extracellular formation of hexoses from sucrose and their subsequent transport, formation of intracellular glycogen-like polysaccharide, or binding of sucrose or extracellular glucans to the cocci. Rather, there are at least three discrete transport systems for sucrose, two of which are phosphoenolpyruvate-dependent phosphotransferases with relatively low apparent Km values and the other a non-phosphotransferase (non-PTS) third transport system (termed TTS) with a relatively high apparent Km. For strain 6715-13 mutant 33, the Km values are 6.25·10?5 M, 2.4·10?4 M, and 3.0·10?3 M, respectively; for strain NCTC-10449, the Km values are 7.1·10?5 M, 2.5·10?4 M and 3.3·10?3 M, respectively. The two lower Km systems could not be demonstrated in mid-log phase glucose-adapted cocci, a condition known to repress sucrose-specific phosphotransferase activity, but under these conditions the highest Km system persists. Also, a mutant devoid of sucrose-specific phosphotransferase activity fails to evidence the two high affinity (low apparent Km) systems, but still has the lowest affinity (highest Km) system. There was essentially no uptake at 4°C indicating these processes are energy dependent. The third transport system, whose nature is unknown, appears to function under conditions of sucrose abundance and rapid growth which are known to repress phosphoenolpyruvate-dependent sucrose-specific phosphotransferase activity in S. mutans. These multiple transport systems seem well-adapted to S. mutans which is faced with fluctuating supplies of sucrose in its natural habitat on the surfaces of teeth.  相似文献   

16.
The uptake of [32P]phosphate into human red blood cells was inhibited (Ki = 0.6 mM) by the sulfhydryl reagent 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB). 2-Nitro-5-thiobenzoic acid (NTB), the reduced form of DTNB, was a less potent inhibitor (Ki = 7 mM). The inhibition of anion transport by DTNB could be reversed by washing DTNB-treated cells with isotonic buffer, or by incubating DTNB-treated cells with 2-mercaptoethanol, which converted DTNB to NTB. DTNB competitively inhibited the binding of 4-[14C]-benzamido-4′-aminostilbene-2,2′-disulfonate, a potent inhibitor of anion transport (Ki = 1?2 μM), to band 3 protein in cells and ghost membranes. These results suggest that the stilbene-disulfonate binding site in band 3 protein can readily accommodate the organic anion DTNB, and that inhibition by DTNB was not due to reaction with an essential sulfhydryl group.  相似文献   

17.
Five species of cockroach were tested on a miniature treadmill at three velocities as O2 consumption (V?O2) was measured: Gromphadorhina chopardi, Blaberus discoidalis, Eublaberus posticus, Byrsotria fumagata and Periplaneta americana. All cockroaches showed a classical aerobic response to running: V?O2 increased rapidly from a resting rate to a steady-state (V?O2ss): t12 on-response varied from under 30 s to 3 min. Recovery after exercise was rapid as well; t12 off-response varied from under 30 s to 6 min. These times are faster or similar to mammalian values. V?O2 varied directly with velocity as in running mammals, birds and reptiles. V?O2 during steady-state running was only 4–12 times higher than at rest. Running is energetically much less costly per unit time than flying, but the cost of transport per unit distance is much more expensive for pedestrians. The minimal cost of transport (Mrun), the lowest V?O2 necessary to transport a given mass a specific distance, is high in cockroaches due to their small size. The new data suggest that insects may be less economical than comparable sized vertebrates.  相似文献   

18.
The proximal colon of the new-born pig maintains a stable short-circuit current which is partly dependent upon the presence of methionine. This interaction between methionine and short circuit current shows Michaelis- Menten knetics with a Km of 0.24 mM and a V of 27 μA·cm?2. The net flux of methionine to the serosal surface of proximal colons also shows a hyperbolic relation to the external concentration of methionine (Km 0.38 mM; V 10.4 nmol·cm?2·min?1). The proximal colon concentrates methionine within its epithelium giving a mucosal to medium ratio of 11.2 ± 1.9 (90 min incubation in 1 mM methionine).The ability of the colon to transport methionine across and concentrate methionine within its mucosa is maintained for at least 24 h after birth. Colonic transport of amino acids could be physiologically important in the pig, where the immediate post-natal transfer of immune globulins has been shown to cause a temporary inhibition of normal intestinal function.  相似文献   

19.
Previous communications from this laboratory have indicated that there exists a thiamine-binding protein in the soluble fraction of Saccharomyces cerevisiae which may be implicated to participate in the transport system of thiamine in vivo.In the present paper it is demonstrated that both activities of the soluble thiamine-binding protein and thiamine transport in S. cerevisiae are greatest in the early-log phase of the growth and decline sharply with cell growth. The soluble thiamine-binding protein isolated from yeast cells by conventional methods containing osmotic shock treatment appeared to be a glycoprotein with a molecular weight of 140 000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The apparent Kd of the binding for thiamine was 29 nM which is about six fold lower than the apparent Km (0.18 μM) of thiamine transport. The optimal pH for the binding was 5.5, and the binding was inhibited reversibly by 8 M urea but irreversibly by 8 M urea containing 1% 2-mercaptoethanol. Several thiamine derivatives and the analogs such as pyrithiamine and oxythiamine inhibited to similar extent both the binding of thiamine and transport in S. cerevisiae, whereas thiamine phosphates, 2-methyl-4-amino-5-hydroxymethylpyrimidine and O-benzoylthiamine disulfide did not show similarities in the effect on the binding and transport in vivo. Furthermore, it was demonstrated by gel filtration of sonic extract from the cells that a thiamine transport mutant of S. cerevisiae (PT-R2) contains the soluble binding protein in a comparable amounts to that in the parent strain, suggesting that another protein component is required for the actual translocation of thiamine in the yeast cell membrane. On the other hand, the membrane fraction prepared from S. cerevisiae showed a thiamine-binding activity with apparent Kd of 0.17μM at optimal pH 5.0 which is almost the same with the apparent Km for the thiamine transport system. The membrane-bound thiamine-binding activity was not only repressible by exogenous thiamine in the growth medium, but as well as thiamine transport it was markedly inhibited by both pyrithiamine and O-benzoylthiamine disulfide. In addition, it was found that membrane fraction prepared frtom PT-R2 has the thiamine-binding activity of only 3% of that from the parent strain of S. cerevisiae.These results strongly suggest that membrane-bound thiamine-binding protein may be directly involved in the transport of thiamine in S. cerevisiae.  相似文献   

20.
10?5 M cyclic AMP has high permeability in human erythrocyte ghosts (p = 0.061 · 10?6cm · s?1). Saturation of influx and efflux occurs. Kztoi = 4.43 mM. Vztoi = 259.6 μM · min?1. Kztio = 0.475 μM. Vztio = 28.3 μM · min?1 at 30°C. Equilibrium exchange entry of cyclic AMP has similar kinetics to zero trans influx, though the system does show counterflow. Cythochalasin B is an apparent competitive inhibitor of cyclic AMP exit. (Ki = 3.9 · 10?7M).Control experiments indicated that cyclic AMP remains intact during incubation with red blood cell ghosts and is contained within the intravesicular space during the transport experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号