首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of ethanol and acetaldehyde on rat intestinal microvillus membrane integrity and glucose transport function were examined in vitro with purified membrane vesicles. Ethanol could influence glucose transport function by alterations in the conformation of the carrier, the lipid environment surrounding the carrier, or in the transport driving force (Na+ electrochemical gradient). Due to the rapid nature of glucose uptake, transport was assayed with the use of an apparatus that permitted uptake measurements as early as 1 s. Ethanol (340 mm) partially and acetaldehyde (44 mm) completely inhibited concentrative glucose uptake throughout the 1-min time course. Their inhibitory effects were reversible and irreversible, respectively. Kinetic measurements made during the initial rate of uptake (at 2 s) with various concentrations of glucose (0.05–8 mm) showed that ethanol and acetaldehyde both caused a decrease in V. Although ethanol did not substantially alter the transport Km, acetaldehyde increased the Km almost 50%. To determine whether ethanol or acetaldehyde directly interfered with glucose carrier function, uptake was measured in the presence of equilibrated Na+. Only acetaldehyde had a significant inhibitory effect under these conditions. Membrane permeability, as determined by efflux of preloaded 6-carboxyfluorescein dye, increased upon exposure of the vesicles to ethanol or acetaldehyde. Membrane fluidity measurements by fluorescence polarization showed that only acetaldehyde had a significant fluidizing effect. These results indicate that ethanol and acetaldehyde acted to perturb membrane integrity and inhibited glucose uptake indirectly by allowing the Na+ gradient to dissipate. Acetaldehyde, which had a stronger inhibitory effect than ethanol, appeared also to directly inhibit carrier function.  相似文献   

2.
Na+-independent l-arginine uptake was studied in rabbit renal brush border membrane vesicles. The finding that steady-state uptake of l-arginine decreased with increasing extravesicular osmolality and the demonstration of accelerative exchange diffusion after preincubation of vesicles with l-arginine, but not d-arginine, indicated that the uptake of l-arginine in brush border vesicles was reflective of carrier-mediated transport into an intravesicular space. Accelerative exchange diffusion of l-arginine was demonstrated in vesicles preincubated with l-lysine and l-ornithine, but not l-alanine or l-proline, suggesting the presence of a dibasic amino acid transporter in the renal brush border membrane. Partial saturation of initial rates of l-arginine transport was found with extravesicular [arginine] varied from 0.005 to 1.0 mM. l-Arginine uptake was inhibited by extravesicular dibasic amino acids unlike the Na+-independent uptake of l-alanine, l-glutamate, glycine or l-proline in the presence of extravesicular amino acids of similar structure. l-Arginine uptake was increased by the imposition of an H+ gradient (intravesicular pH<extravesicular pH) and H+ gradient stimulated uptake was further increased by FCCP. These findings demonstrate membrane-potential-sensitive, Na+-independent transport of l-arginine in brush border membrane vesicles which differs from Na+-independent uptake of neutral and acidic amino acids. Na+-independent dibasic amino acid transport in membrane vesicles is likely reflective of Na+-independent transport of dibasic amino acids across the renal brush border membrane.  相似文献   

3.
The transport of d-glucose by brush border membranes isolated from the rabbit renal cortex was studied. At concentrations less than 2 mM, the rate of d-glucose uptake increased linearly with the concentration of the sugar. No evidence was found for a “high-affinity” (μM) saturable site. Saturation was indicated at concentrations of d-glucose greater than 5 mM. The uptake of d-glucose was stereospecific and selectively inhibited by d-galactose and other sugars. Phlorizin inhibited the uptake of d-glucose in the presence and absence of Na+. The glycoside was a potent inhibitor of the efflux of d-glucose. Preloading the brush border membrane vesicles with d-glucose, but not with l-glucose, accelerated exchange diffusion of d-glucose. These results demonstrate that the uptake of d-glucose by renal brush borders represents transport into an intravesicular space rather than solely binding. The rate of d-glucose uptake was increased when the Na+ in the extravesicular medium was high and the membranes were preloaded with a Na+-free medium. The rate of d-glucose uptake was inhibited by preloading the brush border membranes with Na+. These results are consistent with the Na+ gradient hypothesis for d-glucose transport in the kidney. Thus, the presence of a Na+-dependent facilitated transport of d-glucose in isolated renal brush border membranes is indicated. This finding is consistent with what is known of the transport of the sugar in more physiologically intact preparations and suggests that the membranes serve as an effective model system in examining the mechanism of d-glucose transport in the kidney.  相似文献   

4.
The uptake of l-glutamic acid into brush-border membrane vesicles isolated from rat renal proximal tubules is Na+-dependent. In contrast to Na+-dependent uptake of d-glucose, pre-equilibration of the vesicles with K+ stimulates l-glutamic acid uptake. Imposition of a K+ gradient ([Ki+] > [Ko+]) further enhances Na+-dependent l-glutamic acid uptake, but leaves K+-dependent glucose transport unchanged. If K+ is present only at the outside of the vesicles, transport is inhibited. Intravesicular Rb+ and, to a lesser extent, Cs+ can replace intravesicular K+ to stimulate l-glutamic acid uptake. Changes in membrane potential incurred by the imposition of an H+-diffusion potential or anion replacement markedly affect Na+-dependent glutamic acid uptake only in the presence of K+. Experiments with a potential-sensitive cyanine dye also indicate that, in the presence of intravesicular K+ a charge movement is involved in Na+-dependent transport of l-glutamic acid.The data indicate that Na+-dependent l-glutamic acid transport can be additionally energized by a K+ gradient. Furthermore, intravesicular K+ renders Na+-dependent l-glutamic acid transport sensitive to changes in the transmembrane electrical potential difference.  相似文献   

5.
The uptake of glycine in rabbit renal brush border membrane vesicles was shown to consist of glycine transport into an intravesicular space. An Na+ electrochemical gradient (extravesicular>intravesicular) stimulated the initial rate of glycine uptake and effected a transient accumulation of intravesicular glycine above the steady-state value. This stimulation could not be induced by the imposition of a K+, Li+ or choline+ gradient and was enhanced as extravesicular Na+ was increased from 10 mM to 100 mM. Dissipation of the Na+ gradient by the ionophore gramicidin D resulted in diminished Na+-stimulated glycine uptake. Na+-stimulated uptake of glycine was electrogenic. Substrate-velocity analysis of Na+-dependent glycine uptake over the range of amino acid concentrations from 25 μM to 10 mM demonstrated a single saturable transport system with apparent Km = 996 μM and Vmax = 348 pmol glycine/mg protein per min. Inhibition observed when the Na+-dependent uptake of 25 μM glycine was inhibited by 5 mM extravesicular test amino acid segregated dibasic amino acids, which did not inhibit glycine uptake, from all other amino acid groups. The amino acids d-alanine, d-glutamic acid, and d-proline inhibited similarly to their l counterparts. Accelerative exchange of extravesicular [3H]glycine was demonstrated when brush border vesicles were preloaded with glycine, but not when they were preloaded with l-alanine, l-glutamic acid, or with l-proline. It is concluded that a single transport system exists at the level of the rabbit renal brush border membrane that functions to reabsorb glycine independently from other groups of amino acids.  相似文献   

6.
The Na+/l-glutamate (l-aspartate) cotransport system present at the level of rat intestinal brush-border membrane vesicles is specifically activated by the ions K+ and Cl?. The presence of 100 mM K+ inside the vesicles drastically enhances the uptake rate and the transient intravesicular accumulation (overshoot) of the two acidic amino acids. It has been demonstrated that the activation of the transport system depended only in the intravesicular K+ concentration and that in the absence of any sodium gradient, an outward K+ gradient was unable to influence the Na+/acidic amino acid transport system. It was also found that Cl? could specifically activate the Na+-dependent l-glutamate (l-aspartate) uptake either in the presence or in the absence of K+. Also the effect of Cl? was observed only in the presence of an inward Na+ gradient and it was noted to be higher when chloride ion was present on both sides of the membrane vesicles. No influence (activation or accumulation) was observed in the absence of the Na+ gradient and in the presence of chloride gradient. l-Glutamate uptake measured in the presence of an imposed diffusion potential and in the presence of K+ or Cl? did not show any translocation of net charge.  相似文献   

7.
Renal brush border vesicles prepared from rabbit were shown to transport intact glycyl-L-proline into the intravesicular space by a Na+-independent, carrier-mediated process. The kinetics of hydrolysis of glycyl-L-proline by the vesicles showed that this dipeptide was extremely resistant to hydrolysis. The intravesicular concentration of glycyl-L-proline was the same in both NaCl and KCl media. Dipeptide uptake into the vesicles appeared to be via carrier-mediated transport down a concentration gradient.  相似文献   

8.
Purified rabbit intestinal brush border membrane vesicles transport glycyl-L-proline into an osmotically responsive intravesicular space by a Na+- independent, carrier-mediated process. With short incubation, transport occurs mostly as the intact dipeptide, followed by hydrolysis. Pretreatment of the vesicles with papain results in a 60% reduction of L-alanine transport while glycyl-L-proline transport is stimulated by 40%. Papain treatment does not change the intravesicular volume, nor does it increase membrane permeability. Dipeptide transport into papain treated vesicles remains completely Na+- independent as it is in the control vesicles. Many dipeptides inhibit glycyl-L-proline transport into papain treated vesicles both in the presence and absence of a Na+ gradient.  相似文献   

9.
The effect of anhydro-4-epitetracycline on sodium gradient-dependent d-glucose transport of rabbit renal brush-border membrane vesicles was studied. The purity of isolated brush-border membrane vesicles as judged by enzyme activities was not different between normal control and anhydro-4-epitetracycline-administered rabbits. There was no difference in estimate of intravesicular volume, either. When NaCl was used for sodium gradient, the overshoot of d-glucose uptake into brush-border membrane vesicles isolated from anhydro-4-epitetracycline-treated rabbits was significantly smaller than that of normal control rabbits. In the cases of NaSCN or Na2SO4, the former was also smaller than the latter, but not significantly so. To avoid the possible effect of membrane potential on d-glucose uptake, the voltage-clamp method was applied. Even in the voltage-clamped condition, the overshoot of d-glucose uptake into vesicles from anhydro-4-epitetracycline-treated rabbits was decreased compared to that of normal rabbits. In vitro incubation of brush-border membrane vesicles with 20 mM anhydro-4-epitetracycline caused no alteration in sodium gradient-dependent d-glucose uptake. Our results demonstrate that there exists a disorder in sodium gradient-dependent d-glucose uptake of renal brush-border membrane in anhydro-4-epitetracycline-treated rabbits, and suggest that this disorder is one of the underlying mechanisms of experimental Fanconi syndrome.  相似文献   

10.
The Cl? transport properties of the luminal border of bovine tracheal epithelium have been investigated using a highly purified preparation of apical plasma membrane vesicles. Transport of Cl? into an intravesicular space was demonstrated by (1) a linear inverse correlation between Cl? uptake and medium osmolarity and (2) complete release of accumulated Cl? by treatment with detergent. The rate of Cl? uptake was highly temperature-sensitive and was enhanced by exchange diffusion, providing evidence for a carrier-mediated transport mechanism. Transport of Cl? was not affected by the ‘loop’ diuretic bumetanide or by the stilbene-derivative anion-exchange inhibitors SITS (4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid) and DIDS (4,4′-diisothiocyanostilbene-2,2′-disulfonic acid). In the presence of the impermeant cation, tetramethylammonium (TMA+), uptake of Cl? was minimal; transport was stimulated equally by the substitution of either K+ or Na+ for TMA+. Valinomycin in the presence of K+ enhanced further Cl? uptake, while amiloride reduced Na+-stimulated Cl? uptake towards the minimal level observed with TMA+. These results suggest the following conclusions: (1) the tracheal vesicle membrane has a finite permeability to both Na+ and K+; (2) the membrane permeability to the medium counterion determines the rate of Cl? uptake; (3) Cl? transport is not specifically coupled with either Na+ or K+; and, finally (4) Cl? crosses the tracheal luminal membrane via an electrogenic transport mechanism.  相似文献   

11.
d-Glucose decreases phosphate reabsorption in rat proximal tubule. It is also postulated that some amino acids interact with phosphate reabsorption. To investigate the mechanism of these interactions, phosphate, d-glucose and l-alanine transport kinetics were measured in brush border membrane vesicles isolated from superficial rat kidney cortex by the calcium precipitation technique. At pH 7.4, Na+-dependent phosphate transport was inhibited in the presence of either d-glucose (39 mM) or l-alanine (2.4 mM). In this model, with d-glucose or with l-alanine the V value of the phosphate uptake was decreased, whereas the apparent Km for the phosphate uptake was not affected. However, some inhibition of phosphate transport was observed in the presence of l-glucose, d-alanine or d-glucose after phlorizin preincubation. A 30% Na+-dependent l-alanine (0.1 mM) transport inhibition was observed in the presence of 5 mM phosphate. d-Glucose (1 mM) was also inhibited by 20% when 5 mM phosphate was added to incubation medium. According to several authors, in our model, d-glucose decreased the l-alanine transport and vice versa. Moreover, when the membrane potential was abolished, a clear inhibition of d-glucose by l-alanine persisted. These multiple interactions could be explained by the accelerated dissipation of the Na+ gradient insofar as the rate of the Na+ uptake was increased with d-glucose, l-alanine or phosphate and since the absence of variations in membrane potential did not suppress these inhibitions.  相似文献   

12.
The findings that the equilibrium uptake of β-alanine decreased with increasing medium osmolarity and preincubation with β-alanine increased uptake of the amino acid indicate that the uptake of β-alanine by rabbit renal brush border membranes represents transport into membrane vesicles. A Na+ electrochemical gradient (extravesicular > intravesicular) stimulated the initial rate of β-alanine uptake about three times and effected a transient accumulation of the amino acid twice the equilibrium value. Stimulation of the uptake was specific for Na+. Gramicidin abolished the overshoot, presumably by dissipating the gradient by accelerating the electrogenic entrance of Na+ into the vesicle via a pathway not coupled to uptake of β-alanine. In K+-loaded vesicle, valinomycin enhanced the Na+ gradient-dependent uptake of β-alanine. These findings indicate that the Na+ gradient-dependent transport of β-alanine is an electrogenic process and suggest that the membrane potential is a determinant of β-analine transport. Uptake of β-aniline, at a given concentration, reflected the sum of contributions from Na+ gradient-dependent and -independent transport systems. The dependent system saturated at 100 μM. The independent system did not saturate. At physiological concentrations the rate of the Na+ gradient-dependent uptake was four times that in the absence of the gradient. The Na+ gradient-dependent rate of β-alanine uptake was strongly inhibited by taurine, suggesting that β-amino acids have a common transport system, α-Amino acids, i.e. l-arginine, l-glutamate, l-proline, and glycine, representing previously reported specific α-amino acid transport systems in the brush border membrane, did not inhibit the uptake of β-alanine. These findings indicate that the brush border membrane has a distinct transport system for β-amino acids.  相似文献   

13.
Experimental hyperglycemia leads to an increase in the capacity of the rat small intestine to absorb glucose. This effect occurs within hours from the onset of hyperglycemia and is thought to involve an induction of glucose transport in the brush-border and/or basolateral membrane of the intestinal epithelium. We devised a protocol for the simultaneous preparation of brush-border vesicles and basolateral vesicles from rat small intestine to determine the locus for the inductioof glucose transporter in hyperglycemic rats. A 6 h period of intravenous infusion with a 30% glucose solution had no effect on the initial rate of glucose uptake across jejunal or ileal brush-border vesicles when measured in the absence of a Na+ gradient, suggesting that enhanced glucose uptake is not dependent on an increase in the number of Na+-dependent secondary active glucose transporters in the brush-border. Hyperglycemia did not effect the rate of glucose uptake across ileal basolateral vesicles but did cause a 78% increase in the initial rate of carrier-mediated d-glucose uptake across jejunal basolateral vesicles. The induction of glucose transport in the jejunal basolateral membrane was characterized by a rapid rate of glucose equilibration across the vesicles (t12 = 46 s sorbitol infused controls, 18 s hyperglycemia) and a 75% increase in the Vmax for carrier-mediated glucose uptake with no significant change in Kt. When the rats were pretreated with cycloheximide prior to intravenous infusion, the initial rate of d-glucose uptake dropped to 13% of that seen in jejunal basolateral vesicles prepared from untreated rats. These results suggest a rapid turnover rate for the Na+-independent glucose transporter in the basolateral membrane of the enterocyte. An increase in the number of functioning glucose transporters in the basolateral membrane may play an important role in the short-term induction of glucose absorption by the jejunum of the hyperglycemic animal.  相似文献   

14.
The characteristics of carnosine (β-alanyl-l-histidine) transport have been studied using purified brush-border membrane vesicles from mouse small intestine. Uptake curves did not exhibit any overshoot phenomena, and were similar under Na+, K+ or choline+ gradient conditions (extravesicular > intravesicular). However, uptake of histidine showed an overshoot phenomenon in the presence of a Na+-gradient. There was no detectable hydrolysis of carnosine during 15 min of incubation with membrane vesicles under conditions used for transport experiments. Analysis of intravesicular contents further showed the complete absence of the constituent free amino acids of carnosine, and indicates that intact carnosine is transported. Studies on the effect of concentration on peptide uptake revealed that transport occurred by a saturable process conforming to Michaelis-Menten kinetics with a Km of 9.6 ± 1.4 mM and a Vmax of 2.9 ± 0.2 nmol / mg protein per 0.4 min. Uptake of carnosine was inhibited by both di- and tripeptides with a maximum inhibition of 68% by glycyl-l-leucyltyrosine. These results clearly demonstrate that carnosine is transported intact by a carrier-mediated, Na+-independent process.  相似文献   

15.
Summary Thein vitro effect of ethanol on membrane structure and transport properties was studied in isolated renal brush border membrane vesicles.31P-NMR studies showed a dose-dependent increase in the quantity of an isotropic, possibly inverted-micellar component of the renal brush-border membrane as a result of treatment with ethanol. Such structures have been shown to be instrumental in the translocation of material across membrane bilayers. A23Na-NMR study of Na+ exchange in artificial phosphatidylcholine liposomes indicated that ethanol (0.1%) was capable of rending the otherwise inert vesicles permeable to sodium, supporting the idea that ethanol may exert its action via a direct effect on the structure of the phospholipid bilayer. In the isolated renal brush-border membrane vesicles, like in the artificial liposomes, amiloride-insensitive pathways of Na+ transport were shown to be markedly activated by ethanol. These results were consistent with the inhibitory effect ethanol had on Na+ gradient-dependent transport systems such as the Na+ gradient-dependentd-glucose transport and Na+/H+ exchange. In conclusion, our results indicate that ethanol exerts its effect on the renal brush-border membrane by causing a structural change in the phospholipid bilayer which activates sodium intake. The inhibitory effect of ethanol on glucose uptake and Na+/H+ exchange is secondary, as a result of the dissipation of the energy-producing Na+ gradient.  相似文献   

16.
The presence of an Na+/Ca2+ exchange system in basolateral plasma membranes from rat small intestinal epithelium has been demonstrated by studying Na+ gradient-dependent Ca2+ uptake and the inhibition of ATP-dependent Ca2+ accumulation by Na+. The presence of 75 mM Na+ in the uptake solution reduces ATP-dependent Ca2+ transport by 45%, despite the fact that Na+ does not affect Ca2+-ATPase activity. Preincubation of the membrane vesicles with ouabain or monensin reduces the Na+ inhibition of ATP-dependent Ca2+ uptake to 20%, apparently by preventing accumulation of Na+ in the vesicles realized by the Na+-pump. It was concluded that high intravesicular Na+ competes with Ca2+ for intravesicular Ca2+ binding sites. In the presence of ouabain, the inhibition of ATP-dependent Ca2+ transport shows a sigmoidal dependence on the Na+ concentration, suggesting cooperative interaction between counter transport of at least two sodium ions for one calcium ion. The apparent affinity for Na+ is between 15 and 20 mM. Uptake of Ca2+ in the absence of ATP can be enhanced by an Na+ gradient (Na+ inside > Na+ outside). This Na+ gradient-dependent Ca2+ uptake is further stimulated by an inside positive membrane potential but abolished by monensin. The apparent affinity for Ca2+ of this system is below 1 μM. In contrast to the ATP-dependent Ca2+ transport, there is no significant difference in Na+ gradient-dependent Ca2+ uptake between basolateral vesicles from duodenum, midjejunum and terminal ileum. In duodenum the activity of ATP-driven Ca2+ uptake is 5-times greater than the Na+/Ca2+ exchange capacity but in the ileum both systems are of equal potency. Furthermore, the Na+/Ca2+ exchange mechanism is not subject to regulation by 1α,25-dihydroxy vitamin D-3, since repletion of vitamin D-deficient rats with this seco-steroid hormone does not influence the Na+/Ca2+ exchange system while it doubles the ATP-driven Ca2+ pump activity.  相似文献   

17.
The aim of our work is to show the importance of the role of hydrophobic bonds in maintaining Mg2+-ATPase or sucrase activity and Na+-coupled d-glucose uptake normal for the brush border of rat enterocytes. The activity of the two enzymes and the d-glucose uptake were therefore measured under the action of n-aliphatic alcohols and related to the fluidity determined by ESR. Three concentrations were used for the first eight alcohols, those of octanol being about 1500-times lower than those of methanol. For each alcohol the d-glucose uptake and the fluidity were linear functions of the logarithm of the concentration, the linear regressions being practically parallel and equidistant. The concentrations (C) of the eight alcohols inhibiting the d-glucose uptake by 80% were similar to those increasing the membrane fluidity by 3%. The linear relationship which existed in both cases between log 1 / C and log P, P being octanol / water partition coefficients of the alcohols, was evidence of great sensitivity to the hydrophobic effect of the alcohols. Only the first alcohols, however, produced any notable inhibition of Mg2+-ATPase and sucrase. Hydrophobic bonds are thus shown to have little influence in maintaining the activity of Mg2+-ATPase and sucrase, but they modulate the Na+-coupled d-glucose uptake.  相似文献   

18.
Summary A membrane preparation enriched in the basolateral segment of the plasma membrane was isolated from the rat renal cortex by a procedure that included separation of particulates on a self-generating Percoll gradient. The uptake ofl-glutamate by the basolateral membrane vesicles was studied. A Na+ gradient ([Na+] o >[Na+] i ) stimulated the uptake ofl-glutamate and provided the driving force for the uphill transport of the acidic amino acid, suggesting a Na+-l-glutamate cotransport system in the basolateral membrane. A K+ gradient ([K+] i >[K+] o ) increased the uptake additionally. This effect was specific for K+ (Rb+). The action of the K+ gradient in enhancing the uptake ofl-glutamate had an absolute requirement for Na+. In the presence of Na+, but in the absence of a Na+ gradient. i.e., [Na+] o =[Na+] i , the K+ gradient also energized the concentrative uptake ofl-glutamate. This effect of the K+ gradient was not attributable to an alteration in membrane potential. The finding of a concentrative uptake system forl-glutamate energized by both Na+ ([Na+] o >[Na+] i and K+ ([K+] i >[K+] o ) gradients in the basolateral membrane, combined with previous reports of an ion gradient-dependent uphill transport system for this amino acid in the brush border membrane, suggests a mechanism by whichl-glutamate is accumulated intracellularly in the renal proximal tubule to extraordinarily high concentrations.  相似文献   

19.
Inside-out membrane vesicles have been prepared from sheep reticulocytes. With these vesicles, Na+-dependent glycine uptake and net accumulation have been demonstrated to occur in reverse, i.e., from extravesicular (normal cytoplasmic) to intravesicular (normal extravesicular) surface. Uptake and accumulation are inhibited by energization of the sodium pump by ATP whereby the Na+ electrochemical gradient is dissipated. Glycine-dependent Na+ uptake was also observed, providing evidence that Na+-dependent glycine influx into these vesicles, equivalent to normal efflux, is characterized by Na+-glycine co-transport.  相似文献   

20.
In the presence of a Na+-gradient (out > in), l-glutamic acid and l-and d-aspartic acids were equally well concentrated inside the vesicles, while no transport above simple diffusion levels was seen by replacement of Na+ by K+. Equilibrium uptake values were found inversely proportional to the medium osmolarity, thus demonstrating uptake into an osmotically sensitive intravesicular space. The extrapolation of these lines to infinite medium osmolarity (zero space) showed only a small binding component in acidic amino-acid transport. When the same experiment was performed at saturating substrate concentrations, linear relationships extrapolating through the origin but showing smaller slope values were recorded, thus indicating that the binding component could be more important than suspected above. However, binding to the membrane was neglected in our studies as it was absent from initial rate measurements. Na+-dependent uphill transport of l-glutamic acid was stimulated by K+ present on the intravesicular side only but maximal stimulation was recorded under conditions of an outward K+-gradient (in > out). Quantitative and qualitative differences in the K+ effect were noted between pH 6.0 and 8.0. Initial uptake rates showed pH dependency in Na+-(out > in) + K+-(in > out) gradient conditions only with a physiological pH optimum between 7.0 and 7.5. It was also found that a pH-gradient (acidic outside) could stimulate both the Na+-gradient and the Na+ + K+-gradient-dependent transport of l-glutamic acid. However, pH- or K+-gradient alone were ineffective in stimulating uptake above simple diffusion level. Finally, it was found that increased rates of efflux were always observed with an acidic pH outside, whatever the conditions inside the vesicles. From these results, we propose a channel-type mechanism of l-glutamic acid transport in which Na+ and K+ effects are modulated by the surrounding pH. The model proposes a carrier with high or low affinity for Na+ in the protonated or unprotonated forms, respectively. We also propose that K+ binding occurs only to the unprotonated carrier and allows its fast recycling as compared to the free form of the carrier. Such a model would be maximally active and effective in the intestine in the in vivo physiological situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号