首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pectoralis muscles of dystrophic chickens (line 413) were hypertrophic on the basis of fresh weight and fat-free dry weight. They also had greater DNA content and greater glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) activities. Of the parameters measured, the largest differences between pectoralis muscles from dystrophic and normal (line 412) chickens were for DNA content and G6PD activity. These parameters were 4.3- and 6.7-fold, respectively, the values for control pectoralis at 5 wk of age. The average number of nuclei per unit length of isolated muscle fiber was also greater (approximately 3-fold) for the dystrophic pectoralis. Body weight and pectoralis fresh weight, fat-free dry weight, DNA content, G6PD activity and 6PGD activity were reduced significantly in propylthiouracil (PTU)-treated normal and dystrophic chickens. Moreover, the effects of PTU were more pronounced in the dystrophic strain. Thyroid deprivation significantly improved the righting ability of the dystrophic chickens, in addition to its influence on muscle hypertrophy and body growth. Thyroxine (T4) replacement reversed the PTU effects in both strains. Of all the variables measured, total G6PD activity was the most affected by PTU treatment of dystrophic chickens and was only 16% of the control dystrophic value.In addition to the effects of thyroid deprivation on the expression of avian muscular dystrophy, we observed significant differences in thyroid-related variables in the two strains. The average thyroid weight at 4 wk and serum triiodothyronine level at 5 wk for dystrophic chickens were 65 and 76%, respectively, of the normal values. The results that we report here indicate that altered thyroid function affects the expression of avian muscular dystrophy.  相似文献   

2.
Summary Avian muscular dystrophy is an autosomal recessive genetic disease characterized by early hypertrophy and loss of function of the pectoralis major. The disease is progressive, ultimately resulting in atrophy and heavy lipid deposition.Previous investigators have noted a decrease in the ability of the dystrophic sarcoplasmic reticulum to concentrate Ca2+. More recently, other investigators have shown an abnormal calcium uptake in avian dystrophic sarcoplasmic reticulum. They indicated, using freeze-fracture techniques, that a 90 Å particle of the vesicle membrane exhibited a decreased population and suggested that they might be the ATPase involved in calcium transport.Our studies confirm the earlier observations of a decreased rate of Ca2+ uptake and Ca2+ binding capacity of dystrophic fragmented sarcoplasmic reticulum vesicles which are isolated from both embryonic and adult pectoralis. These observations correlate in turn with a 75% drop in the Ca: ATP transport efficiency of the dystrophic sarcoplasmic reticulum determined by measuring the rate of32Pi liberation from -ATP32 during active calcium transport by the isolated sarcoplasmic reticulum SR.In addition, we have found a quantitative deficiency in a 65,000 dalton component of the dystrophic fragmented SR at the time of myoblast fusion by measuring35S-Methionine incorporation into the SR, coupled to high resolution polyacrylamide gel electrophoresis and radioautography. Analysis of total tissue calcium by atomic absorption spectroscopy revealed a decrease in the total calcium content of dystrophic muscle.  相似文献   

3.
The pathogenesis of the human muscular dystrophies is unknown, and several competing hypotheses have been proposed. The vascular hypothesis states that muscle fibre necrosis occurs in dystrophy as a result of transient muscle ischemia. Although abnormalities of the vascular system may be demonstrated in dystrophy, their role in pathogenesis remains obscure. The responses to serotonin (5-HT) and noradrenaline (NA) were examined in isolated ischiatic artery preparations from normal and genetically dystrophic chickens. The tension generated in response to 5-HT was greater in arteries from normal chickens than in arteries from dystrophic chickens, whereas responses to NA were similar. Analysis of the concentration-response relationships demonstrated that the dystrophic ischiatic artery was less sensitive to 5-HT than was the normal artery, although the sensitivity to NA was similar in both vessels. The results of this study are not consistent with the view that muscle fibre necrosis in avian dystrophy is a consequence of muscle anoxia. These data do demonstrate pharmacological differences between dystrophic avian arteries and arteries from normal chickens, but their presence may represent merely the expression of dystrophy in vascular smooth muscle.  相似文献   

4.
A skeletal muscle membrane fraction enriched in sarcoplasmic reticulum (SR) contained Ca2+-ATPase activity which was stimulated in vitro in normal chickens (line 412) by 6 nM purified bovine calmodulin (33% increase over control, P less than 0.001). In contrast, striated muscle from chickens (line 413) affected with an inherited form of muscular dystrophy, but otherwise genetically similar to line 412, contained SR-enriched Ca2+-ATPase activity which was resistant to stimulation in vitro by calmodulin. Basal levels of Ca2+-ATPase activity (no added calmodulin) were comparable in muscles of unaffected and affected animals, and the Ca2+ optima of the enzymes in normal and dystrophic muscle were identical. Purified SR vesicles, obtained by calcium phosphate loading and sucrose density gradient centrifugation, showed the same resistance of dystrophic Ca2+-ATPase to exogenous calmodulin as the SR-enriched muscle membrane fraction. Dystrophic muscle had increased Ca2+ content compared to that of normal animals (P less than 0.04) and has been previously shown to contain increased levels of immuno- and bioactive calmodulin and of calmodulin mRNA. The calmodulin resistance of the Ca2+-ATPase in dystrophic muscle reflects a defect in regulation of cell Ca2+ metabolism associated with elevated cellular Ca2+ and calmodulin concentrations.  相似文献   

5.
The Ca2+ +Mg2+-dependent adenosinetriphosphatase (EC 3.6.1.3) and calsequestrin have been isolated from the sarcoplasmic reticulum of normal and dystrophic chicken muscle. The adenosinetriphosphatases, isolated from the two lines of chickens were identical in molecular weight, enzyme activity and in Ca2+ +Mg2+-dependence. Calsequestrins isolated from the two lines bound identical amounts of calcium. There were no differences in the Ca2+ transport functions of the sarcoplasmic reticulum membrane, isolated from the two lines of chickens. These results indicate that morphological differences in dystrophic chicken sarcoplasmic reticulum, described by Sabbadini et al (Sabbadini, R., Scales, D. Inesi, G. FEBS Lett. 54, 8 (1975), cannot be ascribed to qualitative differences in the adenosinetriphosphatase or calsequestrin.  相似文献   

6.
We have isolated sarcoplasmic reticulum from normal and dystrophic chicken muscle, using an improved isolation procedure. Dystrophic sarcoplasmic reticulum has a reduced level of calcium-sensitive ATPase activity, phosphoenzyme formation, and steady-state calcium transport. Anion-stimulated calcium transport by dystrophic sarcoplasmic reticulum is also reduced when measured under the proper conditions, and dystrophic sarcoplasmic reticulum shows no alteration in calcium efflux rate. Active calcium phosphate loading of the normal and dystrophic sarcoplasmic reticulum preparations indicates that a reduced percentage jof the dystrophic vesicles are capable of active calcium transport. The loaded dystrophic sarcoplasmic reticulum vesicles exhibit the same relative reductions in enzymatic activity as the starting sarcoplasmic reticulum preparations. However, the enzyme activities of normal and dystrophic sarcoplasmic reticulum are similar in the presence of detergent and exogenous phospholipid. On the basis of these results, we suggest that the lipid microenvironment of the dystrophic enzyme is altered.  相似文献   

7.
Contraction of skeletal muscle is triggered by release of calcium from the sarcoplasmic reticulum. In this study, highly purified normal and dystrophic mouse sarcoplasmic reticulum vesicles were compared with respect to calcium release characteristics. Sarcoplasmic reticulum vesicles were actively loaded with calcium in the presence of an ATP-regenerating system. Calcium fluxes were followed by dual wavelength spectrophotometry using the metallochromic indicators antipyrylazo III and arsenazo III, and by isotopic techniques. Calcium release from sarcoplasmic reticulum vesicles was elicited by (a) changing the free calcium concentration of the assay medium (calcium-induced calcium release); (b) addition of a permeant anion to the assay medium, following calcium loading in the presence of a relatively impermeant anion (depolarization-induced calcium release); (c) addition of the lipophilic anion tetraphenylboron (TPB?) to the assay medium and (d) using specific experimental conditions, i.e. high phosphate levels and low magnesium (spontaneous calcium release). Drugs known to influence Ca2+ release were shown to differentially affect the various types of calcium release. Caffeine (10 mM) was found to enhance calcium-induced calcium release from isolated sarcoplasmic reticulum. Ruthenium red (20 μM) inhibited both calcium-induced calcium release and tetraphenylboron-induced calcium release, and partially inhibited spontaneous calcium release and depolarization-induced calcium release. Local anesthetics inhibited spontaneous calcium release in a time-dependent manner, and inhibited calcium-induced calcium release instantaneously, but did not inhibit depolarization-induced calcium release. Use of pharmacological agents indicates that several types of calcium release operate in vitro. No significant differences were found between normal and dystrophic sarcoplasmic reticulum in calcium release kinetics or drug sensitivities.  相似文献   

8.
Two lines of genetically involved and control chickens were compared with regard to the onset of muscle dystrophy during the early stages of growth ex ovo. Definite structural and functional involvement of pectoralis muscle developed within the first 4-5 weeks. In parallel experiments, microsomal membranes were obtained weekly from pectoralis muscle during the first 14 weeks ex ovo. The microsomes were studied with respect to ultrastructural features, protein composition, Ca2+ uptake and ATPase activity. Microsomal preparations obtained from all newborn chickens contain two types of vesicles: one type reveals an asymmetric distribution and 'high density' of particles on freeze-fracture faces which is characteristic of sarcoplasmic reticulum (SR) membrane; the other type reveals a symmetric distribution and 'low density' of particles. The yield of 'low density' microsomes from muscle of normal birds is very much reduced as the chicks grow from 1 to 4-5 weeks ex ovo. On the contrary, it remains high in chicks developing muscle dystrophy. Ca2+ uptake and coupled ATPase activity are found to be of nearly identical specific activity in control and genetically involved newborn chicks. The specific activity of the control birds, however, increases as the chicks grow from 1 to 4-5 weeks of age, while the specific activity of the dystrophic birds remains low. Such a difference appears to be related to the relative representation of sarcoplasmic reticulum and 'low density' vesicles in the microsomal preparations. It is concluded that failure to obtain a normal differentiation of muscle cell membranes is a basic defect noted in the early growth of genetically involved chickens. This defect appears along with the earliest signs of the dystrophic process.  相似文献   

9.
The presence and activity of the fraction of creatine kinase (CK) which was associated with myofibrils and located in the M line of the sarcomeres was determined in normal and dystrophic avian muscle and in normal and dystrophic (Duchenne) human muscle. Myofibrils were isolated from homogenates of muscle and washed nine times so as to remove nonmyofibrillar CK. In myofibrils from dystrophic muscle the enzyme CK was localized to the M line using immunofluorescent techniques and was enzymatically active. These results suggest that in both avian and Duchenne muscular dystrophy, there is not a myofibrillar disorder of the phosphocreatine shuttle.  相似文献   

10.
Human subjects and mice have been found to have a milder progression of muscular dystrophy when the disease is associated with genotypically determined dwarfism. In this paper we describe an experimental test for reducing growth hormone in dystrophic chickens that uses rabbit anti-chicken growth hormone anti-serum (anti-cGH). Antiserum was injected daily into dystrophic (line 413) male chickens from day 1 to day 8 after hatching. Dystrophic chickens injected with anti-cGH maintained a significantly higher score in the standardized test for righting ability (P less than 0.001-0.051) from 3 to 9 1/2 wk after hatching when compared with dystrophic controls. The observed prolongation of the functional ability of injected dystrophic animals suggests that growth hormone plays a role in potentiating the symptoms of dystrophy in chickens.  相似文献   

11.
We showed previously that propylthiouracil (PTU), a thyroid inhibitor, could alleviate several major signs of hereditary muscular dystrophy in chickens. The goals of the present investigation were to: (1) determine whether a nearly athyroid condition (achieved within two days after hatching by surgical thyroidectomy plus PTU) during an 11-day period beneficially affects the dystrophic condition when followed by triiodothyronine (T3) replacement to 33 days of age; (2) determine the beneficial effects on the expression of avian dystrophy when the thyroidectomized-PTU-treated chickens received a wide range of moderate to low T3 replacement doses beginning by two days after thyroidectomy; and (3) examine the thyroid hormone receptor system in dystrophic muscle for a possible abnormality. Thyroid deprivation increased muscle function (righting ability) and reduced plasma creatine kinase activity in dystrophic chickens. The major thyroid-related abnormality in dystrophic pectoralis muscles was an increased maximum binding capacity of solubilized nuclear T3 receptors.  相似文献   

12.
We have reported previously that the pectoralis muscle from three month-old dystrophic chickens with signs of myopathy exhibits increased calmodulin content, elevated calmodulin-specific mRNA (Biochem. Biophys. Res. Commun. 137:507-512, 1986), and reduced sarcoplasmic reticulum (SR) Ca2+-ATPase activity in response to calmodulin exposure in vitro (Clin. Res. 34: 725A, 1986). To determine the early time sequence for development of these abnormalities, we have studied muscle from embryos and post-hatched chickens at various ages. Quantitated by dot blot analysis, there was an approximate two-fold increase in calmodulin-specific mRNA in dystrophic muscle as early as 13 days ex ovo which was maintained throughout development up to three months ex ovo. Similarly, Ca2+-ATPase activity measured in SR membranes from chickens as early as 13 days post-hatch was also found to be resistant to stimulation in vitro by exogenous calmodulin, whereas the enzyme from normal muscle was calmodulin-stimulable. These findings suggest that the genetic lesion expressed in the avian dystrophic animal model involves the loss of normal control of intracellular calcium metabolism early in the maturation of the affected musculature and prior to appearance of disease signs.  相似文献   

13.
Hexokinase activity was found to be increased in both the more severely affected red (thigh) muscle of dystrophic chickens. The increase in activity was largely associated with the particulate fraction. These findings may indicate early events in the pathogenesis of avian muscular dystrophy.  相似文献   

14.
The myosin isoform content in the affected fibers of chickens with inherited muscular dystrophy has been investigated with a new high-performance liquid chromatographic procedure for separation of the tryptic fragments of myosin subfragment 1 (S-1). The results indicate that dystrophic muscle contains substantial amounts of normal adult myosin, together with various myosin species present in normal 5-day posthatch chickens. Confirmation was obtained by comparative peptide mapping of the S-1 tryptic fragments and by N-terminal sequencing of 20-kDa species. Together with data on other contractile proteins and certain metabolic enzymes [Obinata, T., Takano-Ohmura, H., & Matsuda, R. (1980) FEBS Lett. 120, 195-198; Mikasa, T., Takeda, S., Shimizu, T., & Kitaura, T. (1981) J. Biochem. (Tokyo) 89, 1951-1962; Feit, H., & Domke, R. (1982) Cell Motil. 2, 309-315; Cosmos, E. (1966) Dev. Biol. 13, 163-181; Cosmos, E., & Butler, J. (1967) in Exploratory Concepts in Muscular Dystrophy and Related Disorders (Milhorat, A. R., Ed.) pp 197-204, Excerpta Medica, Amsterdam], the results are consistent with the hypothesis that there is a general defect in muscle maturation in avian dystrophy.  相似文献   

15.
Several structural and functional properties are characterized in nucleated erythrocyte plasmalemmae of age and sex-matched dystrophic (line 413) and normal (line 412) chickens obtained from the University of California at Davis. Plasmalemma purity is assessed through marker enzymes. Significant differences are observed in the phospholipid content between dystrophic and normal chickens. The dystrophic chicken erythrocyte plasmalemma has an increased concentration of phosphatidylserine and a decreased concentration of phosphatidylethanolamine compared with control birds. Also, a measurable and distinct polar lipid, observed only on thin-layer chromatography (TLC) plates spotted with dystrophic preparations, is visualized adjacent to phosphatidylethanolamine. These abnormalities in the dystrophic chicken erythrocyte may signal a general defect in membrane structure for chicken dystrophy.  相似文献   

16.
Several structural and functional properties are characterized in nucleated erythrocyte plasmalemmae of age- and sex-matched dystrophic (line 413) and normal (line 412) chickens obtained from the University of California at Davis. Plasmalemma purity is assessed through marker enzymes. Significant differences are observed in the phospholipid content between dystrophic and normal chickens. The dystrophic chicken erythrocyte plasmalemma has an increased concentration of phosphatidylserine and a decreased concentration of phosphatidylethanolamine compared with control birds. Also, a measurable and distinct polar lipid, observed only on thin-layer chromatography (TLC) plates spotted with dystrophic preparations, is visualized adjacent to phosphatidylethanolamine. These abnormalities in the dystrophic chicken erythrocyte may signal a general defect in membrane structure for chicken dystrophy.  相似文献   

17.
Y Mizuno 《Life sciences》1984,34(10):909-914
Changes in superoxide dismutase activities in early stages of chronological development were investigated in normal and dystrophic chickens. Both cupro-zinc and manganese superoxide dismutase activities were significantly elevated in the dystrophic chickens studied as early as one week after hatching compared to those in the control. In control chickens, both cupro-zinc and manganese superoxide dismutase activities declined as they grew older. In dystrophic chickens, manganese superoxide dismutase activity declined gradually as they grew older as in the control. However, cupro-zinc superoxide dismutase activity increased until four weeks of age. The latter activity was still twice as high as that of the control at four months of age. Increased activities in superoxide dismutases in early stages of the development suggest presence of increased turnover of active oxygen species from the early stage of the disease in this avian muscular dystrophy. And the distinct time course of cupro-zinc superoxide dismutase activity suggests involvement of active oxygen species in pathogenesis of this disorder.  相似文献   

18.
We recently observed that, around the time of hatching, chick skeletal muscles synthesize and secrete apolipoprotein A1 (apo-A1) at high rates and that reinitiation of synthesis of this serum protein to high levels occurs in mature chicken breast muscle following surgical denervation (Shackelford, J. E., and Lebherz, H. G. (1983) J. Biol. Chem. 258, 7175-7180; 14829-14833). In the present work we investigate the effect of avian muscular dystrophy on the synthesis of apo-A1 in chicken muscles. The relative rate of synthesis of apo-A1 and levels of apo-A1 RNA in mature dystrophic breast (fast-twitch) muscle were about 6-fold higher than normal, while synthesis of apo-A1 in breast muscles derived from 2-day-old dystrophic chicks was close to normal. These observations suggest that the elevated apo-A1 synthetic rate in mature dystrophic breast muscle results from a failure of the diseased tissue to "shut down" apo-A1 synthesis to the normal level during postembryonic maturation. Apo-A1 synthesis in the "slow-twitch" lateral adductor muscle of dystrophic chickens was found to be normal. Our work is discussed in terms of the apparent similarities between the effects of surgical denervation and muscular dystrophy on the protein synthetic programs expressed by chicken skeletal muscles.  相似文献   

19.
Abstract: Acetylcholinesterase (AChE) and pseudocholinesterase (°ChE) were analysed in the blood plasma of developing chickens, both normal and those with inherited muscular dystrophy. The amounts and the molecular forms of each were examined. °ChE concentration rises in the plasma of normal and dystrophic chicks at the end of embryonic development and is maintained after hatching at a constant, relatively high level, accounting for 90-95% of total cholinesterase activity in normal plasma. This level is maintained in normal and dystrophic chickens. In embryonic plasma of both normal and dystrophic chicks, on the other hand, the levels of AChE are higher than those of °ChE. Immediately after hatching the AChE level decreases rapidly in normal plasma, reaching a very low level by 2-3 weeks ex ovo. The AChE level in plasma from dystrophic birds, although less than normal from day 19 in ovo to 2 weeks ex ovo, subsequently increases to peak around 4 months at levels 15-20-fold of those in normal birds. There is virtually no enzyme of either type in the erythrocytes of normal or dystrophic chickens. The changes of AChE in plasma were correlated with the alterations of AChE in dystrophic fast-twitch muscles, suggesting that the latter pool is a precursor of the plasma AChE. Both the AChE and the °ChE in plasma exist in multiple molecular forms, which are similar to certain of those found previously in the muscles of these birds. The major form (60-80%) of both enzymes in the plasma is the M form (sedimentation coefficient ≥11 S) in all cases, but it is accompanied by certain other forms. In no case is there any of the heaviest form (H2, 19-20 S) of AChE or of °ChE found in normal and dystrophic muscle, which is attached at the synapses in normal muscle. The pattern of forms of plasma °ChE is constant at all ages, and in normal and dystrophic chickens. The pattern of forms of AChE in the plasma, in contrast, varies with age and with dystrophy in a characteristic manner. The sedimentation coefficients and the amounts of the enzymes in fast-twitch muscle of dystrophic animals are compared with those of the plasma forms, and an interpretation is given of the characteristic patterns of AChE and of χE in their blood.  相似文献   

20.
Myofibrillar protein degradation was measured in 4-week-old normal (line 412) and genetically muscular-dystrophic (line 413) New Hampshire chickens by monitoring the rates of 3-methylhistidine excretion in vivo and in vitro. A method of perfusing breast and wing muscles was developed and the rate of 3-methylhistidine release in vitro was measured between 30 and 90min of perfusion. During this perfusion period, 3-methylhistidine release from the muscle preparation was linear, indicating that changes in 3-methylhistidine concentration of the perfusate were the result of myofibrillar protein degradation. Furthermore, the viability of the perfused muscle was maintained during this interval. After 60min of perfusion, ATP, ADP and creatine phosphate concentrations in pectoral muscle were similar to muscle freeze-clamped in vivo. Rates of glucose uptake and lactate production were constant during the perfusion. In dystrophic-muscle preparations, the rate of 3-methylhistidine release in vitro (nmol/h per g of dried muscle) was elevated 2-fold when compared with that in normal muscle. From these data the fractional degradation rates of myofibrillar protein in normal and dystrophic pectoral muscle were calculated to be 12 and 24% respectively. Daily 3-methylhistidine excretion (nmol/day per g body wt.) in vivo was elevated 1.35-fold in dystrophic chickens. Additional studies revealed that the anti-dystrophic drugs diphenylhydantoin and methylsergide, which improve righting ability of dystrophic chickens, did not alter 3-methylhistidine release in vitro. This result implies that changes in myofibrillar protein turnover are not the primary lesion in avian muscular dystrophy. From tissue amino acid analysis, the myofibrillar 3-methylhistidine content per g dry weight of muscle was similar in normal and dystrophic pectoral muscle. More than 96% of the 3-methylhistidine present in pectoral muscle was associated with the myofibrillar fraction. Dystrophic myofibrillar protein contained significantly less 3-methylhistidine (nmol/g of myofibrillar protein) than protein from normal muscle. This observation supports the hypothesis that there may be a block in the biochemical maturation and development of dystrophic muscle after hatching. Free 3-methylhistidine (nmol/g wet wt.) was elevated in dystrophic muscle, whereas blood 3-methylhistidine concentrations were similar in both lines. In summary, the increased myofibrillar protein catabolism demonstrated in dystrophic pectoral muscle correlates with the increased lysosomal cathepsin activity in this tissue as reported by others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号