首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is not known whether ouabain injected into the kidney in vivo is bound exclusively to the (Na+ + K+)-ATPase and whether the reduction of sodium pumping capacity is large enough to account for the reduction in sodium reabsorption. In the present study on dogs the total amount of parenchymal ouabain was therefore estimated and the specific renal binding compared to the reduction in (Na+ + K+)-ATPase activity. Ouabain, 120 nmol/kg body weight, was injected into the renal artery in vivo reducing the (Na+ + K+)-ATPase activity by 3lmost 80%. After nephrectomy, tissue ouabain could be quantified by radioimmunoassay after heating the homogenate to 70°C for 30 min; negligible amounts were detectable without heating. No correlation between ouabain binding and tissue volume, protein content, DNA content or Mg2+-ATPase content could be found when comparing the following four fractions of the kidney: outer cortex, inner cortex, outer medulla and papilla. For the whole kidney, mean parenchymal tissue concentration of ouabain equalled 0.58 ± 0.03 μmol/100 g wet tissue. Only 21.3 ± 1.2% of the ouabain was confined to the outer medulla corresponding to 54 ± 4 nmol giving a tissue concentration of 1.08 ± 0.05 μmol/100 g wet tissue. The renal ouabain concentrations were highly correlated to the reduction in (Na+ + K+)-ATPase activity, giving a ratio between the reduction in hydrolysis rate and bound ouabain (turnover number) of 6105 min?1 which is close to the value of 7180 min?1 found by in vitro Scatchard analysis. No ouabain seems to be bound to other tissue components than the (Na+ + K+)-ATPase and the present method is therefore a simple way of measuring the number of inhibited (Na+ + K+)-ATPase molecules after in vivo injection of ouabain.  相似文献   

2.
K+ induces an apparent heterogeneity among an otherwise homogeneous population of nucleotide-binding sites in (Na+ + K+)-ATPase preparations from pig kidney. With the help of ouabain we show that this heterogeneity cannot be due to a mixture of different and independent sites and conclude that each enzyme molecule must contain two nucleotide site-containing units that show interaction. Na+ induces an apparent heterogeneity among an otherwise homogeneous population of ouabain-binding sites. The argument is, therefore, extended to include one ouabain site on each of the structural units that bind nucleotide. All these structural units are shown to hydrolyse substrate at identical rates. Using the presently available molecular weight data, it is concluded that the enzyme is composed of two subunits each possessing one nucleotide-binding site, one ouabain-binding site, one α-peptide and the capacity for hydrolysing ATP and p-nitrophenyl phosphate.  相似文献   

3.
(Na+,K+)-ATPase is able to catalyze a continuous ATP?Pi exchange in the presence of Na+ and in the absence of a transmembrane ionic gradient. At pH 7.6 the Na+ concentration required for half-maximal activity is 85 mM and at pH 5.1 it is 340 mM. In the presence of optimal Na+ concentration, the rate of exchange is maximal at pH 6.0 and varies with ADP and Pi concentration in the assay medium. ATP?Pi exchange is inhibited by K+ and by ouabain.  相似文献   

4.
The addition of LiCl stimulated the (Na++K+)-dependent ATPase activity of a rat brain enzyme preparation. Stimulation was greatest in high Na+/low K+ media and at low Mg. ATP concentrations. Apparent affinities for Li+ were estimated at the α-sites (moderate-affinity sites for K+ demonstrable in terms of activation of the associated K+-dependent phosphatase reaction), at the β-sites (high-affinity sites for K+ demonstrable in terms of activation of the overall ATPase reaction), and at the Na+ sites for activation. The relative efficacy of Li+ was estimated in terms of the apparent maximal velocity of the phosphatase and ATPase reactions when Li+ was substituted for K+, and also in terms of the relative effect of Li+ on the apparent KM for Mg· ATP. With these data, and previously determined values for the apparent affinities of K+ and Na+ at these same sites, quantitative kinetic models for the stimulation were examined. A composite model is required in which Li+ stimulates by relieving inhibition due to K+ and Na+ (i) by competing with K+ for the α-sites on the enzyme through which K+ decreases the apparent affinity for Mg·ATP and (ii) by competing with Na+ at low-affinity inhibitory sites, which may represent the external sites at which Na+ is discharged by the membrane NA+/K+ pump that this enzyme represents. Both these sites of action for Li+ would thus lie, in vivo, on the cell exterior.  相似文献   

5.
The effect of l-3,5,3′-triiodothyronine (T3) and thyroxine (T4) on (Na+ + K+)-ATPase activities was examined in rabbit kidneys because in this tissue almost 80% of the metabolism is connected to active sodium transport. T3-receptor concentrations were estimated as 0.62 and 0.80 pmol/mg per DNA in the cortex and outer medulla, respectively. A dose of 0.5 mg T3/kg body weight for 3 days increased basal metabolic rate by almost 60%, and the mitochondrial 1-α-glycerophosphate dehydrogenase activity was increased by 50% in both the cortex and medulla. (Na+ + K+)-ATPase activity in the liver was raised by almost 50%. However, no changes in (Na+ + K+)-ATPase activities or binding sites for [3H]ouabain in either the kidney cortex or medulla could be observed. T4 at 16 mg/kg daily for 14 days was also without effect on renal (Na+ + K+)-ATPase activities. Furthermore, the response to T3 was absent at high sodium excretion rates induced by unilateral nephrectomy and extracellular volume expansion. Thus, despite stimulation of basal metabolic rate and renal 1-α-glycerophosphate dehydrogenase activity by T3 and T4, the (Na+ + K+)-ATPase activity in the rabbit kidney is identical in euthyroid and hyperthyroid states. However, thyroid hormones prevent the normal natriuretic response to extracellular volume expansion.  相似文献   

6.
The K+-dependent p-nitrophenylphosphatase activity catalyzed by purified (Na+ + K+)-ATPase from pig kidney shows substrate inhibition (Ki about 9.5 mM at 2.1 mM Mg2+). Potassium antagonizes and sodium favours this inhibition. In addition, K+ reduces the apparent affinity for substrate activation, whereas p-nitrophenyl phosphate reduces the apparent affinity for K+ activation. In the absence of Mg2+, p-nitrophenyl phosphate, as well as ATP, accelerates the release of Rb+ from the Rb+ occluded unphosphorylated enzyme. With no Mg2+ and with 0.5 mM KCl, trypsin inactivation of (Na+ + K+)-ATPase as a function of time follows a single exponential but is transformed into a double exponential when 1 mM ATP or 5 mM p-nitrophenyl phosphate are also present. In the presence of 3 mM MgCl2, 5 mM p-nitrophenyl phosphate and without KCl the trypsin inactivation pattern is that described for the E1 enzyme form; the addition of 10 mM KCl changes the pattern which, after about 6 min delay, follows a single exponential. These results suggest that (i) the shifting of the enzyme toward the E1 state is the basis for substrate inhibition of the p-nitrophenulphosphatase acitivy of (Na+ + K+)-ATPase, and (ii) the substrate site during phosphatase activity is distinct from the low-affinity ATP site.  相似文献   

7.
The mechanisms of activation of renal (Na+ + K+)-ATPase by administration of the synthetic glucocorticoid hormone, dexamethasone, have been investigated in adrenalectomized rats. Chronic treatment with dexamethasone (1–5 mg/100 g body wt. daily for 5 days) stimulated (Na+ + K+)-ATPase specific activity in crude homogenated and microsomal fractions of renal cortex (by approx. 100–150%) and renal medulla (by approx. 100%). Acute treatment with dexamethasone (0.5–10 mg/100 g body wt.) also stimulated enzyme activity in crude homogenates and microsomal fractions of renal cortex and medulla (by approx. 40–50%). Stimulation was dose dependent and occurred within 2h after hormone treatment. In vitro addition of dexamethasone (10?4–10?8 M) to microsomal fractions did not modify the specific activity of (Na+ + K+)-ATPase. Stimulation of (Na+ + K+)-ATPase activity by acute and chronic administration of the hormone was demonstrated whether specific activities were expressed as a function of cellular protein or cellular DNA. Dexamethasone treatment increased the ratios protein:DNA and, to a lesser extent, the ratios RNA:DNA. However, these effects were mainly due to a reduction in the renal contents of DNA, which suggests that the observed enzyme activation is not due to an action of the hormone on renal hypertrophy. Dexamethasone also reduced cellular DNA contents in the liver. The characteristics of the activation process were essentially similar after treatment with single or multiple doses of the hormone. There were increases in the value for Na+ (approx. 100%), K+ (approx. 40%) and ATP (approx. 160%). The Km values for Na+ (approx. 17 mM) and K+ (approx. 1.8 mM) were unchanged and there was a small increase in the Km value for ATP (0.7 mM as against 1.7 mM). There was no difference in the Hill coefficients for the three substrates. The levels of the high-energy Pi intermediate of the (Na+ + K+)-ATPase reaction were augmented by dexamethasone treatment and the increased levels were quantitatively correlated with the observed stimulation of (Na+ + K+)-ATPase specific activity. The apparent turnover numbers of the reaction remained unchanged. The specific activity of the ouabain-sensitive p-nitrophenylphosphatase increased proportionally to the increase in (Na+ + K+)-ATPase specific activity. Enzyme activation by acute dexamethasone treatment occurred in the absence of changes in glomerular filtration rate and tubular Na+ excretion.These results indicate that (Na+ + K+)-ATPase activation by acute and chronic dexamethasone treatment represents an increase in the number of enzyme units with little or no change in the kinetic properties (affinity, cooperativity) of the enzyme. In addition, the information presented suggests a direct regulatory effect of glucocorticoid hormones on the activity of renal (Na+ + K+)-ATPase and is inconsistent with the concept that changes in Na+ loads mediate the effects of these hormones on enzyme activity. Instead, the results suggests a primary role for glucocorticoid hormones in the renal regulation of Na+ homeostasis.  相似文献   

8.
A ouabain-insensitive Mg2+-ATPase present in a microsomal fraction prepared from the dog submandibular gland was studied. This Mg2+-ATPase was inhibited by increasing concentrations of NaCl, KCl, RbCl and CsCl. The addition of an osmotically equal amount of sucrose was without effect. This inhibition was obtained over a pH range of from 6.3 to 8.8. The Mg2+-ATPase present in microsomes treated with NaI showed a similar inhibition. These results indicate that it is advisable to keep the ionic strength constant in solutions used to obtain (Na++K+)-ATPase activities.  相似文献   

9.
The properties of a (Na+ + K+)-dependent ATPase (ATP phosphohydrolase, EC 3.6.1.3) activator contained in leukocytic extracts was investigated. Intact polymorphonuclear leukocytes release the activator in a time- and temperature-dependent process. It is non-dialyzable through cellophane: inactivated by protease, trypsin, or phenol; contains essential sulfhydryl groups; and is heat and acid labile. Treatment of ATPase with the activator and subsequent removal of the activator from mixtures did not reverse the ATPase activation.  相似文献   

10.
The classical E2-P intermediate of (Na+ + K+)-ATPase dephosphorylates readily in the presence of K+ and is not affected by the addition of ADP. To determine the significane in the reaction cycle of (Na+ + K+)-ATPase of kinetically atypical phosphorylations of rat brain (Na+ + K+)-ATPase we compared these phosphorylated components with the classical E2-P intermediate of this enzyme by gel electrophoresis. When rat brain (Na+ + K+)-ATPase was phosphorylated in the presence of high concentrations of Na+ a proportion of the phosphorylated material formed was sensitive to ADP but resistant to K+. Similarly, if phosphorylation was carried out in the presence of Na+ and Ca2+ up to 300 pmol/mg protein of a K+-resistant, ADP-sensitive material were formed. If phosphorylation was from [γ-32P]CTP up to 800 pmol 32P/mg protein of an ADP-resistant, K+-sensitive phosphorylated matterial were formed. On gel electrophoresis these phosphorylated materials co-migrated with authentic Na+-stimulated, K+-sensitive, E2-P-phosphorylated intermediate of (Na+ + K+)-ATPase, supporting suggestions that they represent phosphorylated intermediates in the reaction sequence of this enzyme.  相似文献   

11.
以不同浓度的NaCl、KCl、MgCl2、CaCl2溶液和葡萄糖溶液作为授精介质,研究了中华鲟(Acipenser sinensis)的受精效果.结果显示,适量的阳离子和葡萄糖作为激活授精介质时中华鲟卵受精率都有所提高.在实验设置浓度范围内25 mmol/L NaCI溶液、0.1 mmol/L KCl溶液、1 mmol/L MgCl2溶液、1 mmol/LCaCh溶液和50 mmol/L葡萄糖溶液浓度下,受精率分别可达到最高值,依次为87.72%、86.82%、82.24%、89.76%、80.92%.随着实验浓度继续增加,受精率反而呈下降趋势.结果显示,作为人工配制的中华鲟精子授精一激活介质,最适NaCI溶液浓度在25 mmol/L附近,最适葡萄糖溶液浓度在25 mmol/L附近,最适KCI溶液浓度≤0.1 mmol/L,最适MgCl2溶液浓度≤1 mol/L,最适CaCh溶液浓度≤1 mmol/L.  相似文献   

12.
The lipid moieties of (Na+, K+)-dependent ATPases of bovine cerebral cortex and bullfrog kidney were partly replaced with extraneous lipids, and temperature effects on their activities were investigated. The effects were found to depend on the lipid moiety, and to be constant with a given lipid regardless of the enzyme source.  相似文献   

13.
The effects of the solvents deuterated water (2H2O) and dimethyl sulfoxide (Me2SO) on [3H]ouabain binding to (Na+,K+)-ATPase under different ligand conditions were examined. These solvents inhibited the type I ouabain binding to the enzyme (i.e., in the presence of Mg2++ATP+Na+). In contrast, both solvents stimulated type II (i.e., Mg2++Pi-, or Mn2+-dependent) binding of the drug. The solvent effects were not due to pH changes in the reaction. However, pH did influence ouabain binding in a differential manner, depending on the ligands present. For example, changes in pH from 7.05 to 7.86 caused a drop in the rate of binding by about 15% in the presence of Mg2++Na++ATP, 75% in the Mg2++Pi system, and in the presence of Mn2+ an increase by 24% under similar conditions. Inhibitory or stimulatory effects of solvents were modified as various ligands, and their order of addition, were altered. Thus, 2H2O inhibition of type I ouabain binding was dependent on Na+ concentration in the reaction and was reduced as Na+ was elevated. Contact of the enzyme with Me2SO, prior to ligands for type I binding, resulted in a greater inhibition of ouabain binding than that when enzyme was exposed to Na++ATP first and then to Me2SO. Likewise, the stimulation of type II binding was greater when appropriate ligands acted on enzyme prior to addition of the solvent. Since Me2SO and 2H2O inhibit type I ouabain binding, it is proposed that this reaction is favored under conditions which promote loss of H2O, and E1 enzyme conformation; the stimulation of type II ouabain binding in the presence of the solvents suggests that this type of binding is favored under conditions which promote the presence of H2O at the active enzyme center and E2 enzyme conformation. This postulation of a role of H2O in modulating enzyme conformations and ouabain interaction with them is in concordance with previous observations.  相似文献   

14.
Trifluoperazine dihydrochloride-induced inhibition of calmodulin-activated Ca2+-ATPase and calmodulin-insensitive (Na+ + K+)- and Mg2+-ATPase activities of rat and human red cell lysates and their isolated membranes was studied. Trifluoperazine inhibited both calmodulin-sensitive and calmodulin-insensitive ATPase activities in these systems. The concentration of trifluoperazine required to produce 50% inhibition of calmodulin-sensitive Ca2+-ATPase was found to be slightly lower than that required to produce the same level of inhibition of other ATPase activities. Drug concentrations which inhibited calmodulin-sensitive ATPase completely, produced significant reduction in calmodulin-insensitive ATPases as well. The data presented in this report suggest that trifluoperazine is slightly selective towards calmodulin-sensitive Ca2+-ATPase but that it is also capable of inhibiting calmodulin-insensitive (Na+ + K+)-ATPase and Mg2+-ATPase activities of red cells at relatively low concentrations. Thus the action of the drug is not due entirely to its interaction with calmodulin-mediated processes, and trifluoperazine cannot be assumed to be a selective inhibitor of calmodulin interactions under all circumstances.  相似文献   

15.
Beef brain microsomes bound approximately 180–220 pmoles of [3H]ouabain per mg of protein in the presence of either MgCl2 and inorganic phosphate or ATP, MgCl2 and NaCl. The ouabain-binding capacity and the ouabain-membrane complex were more stable than the (Na+,K+)-ATPase activity to treatment with agents known to affect the membrane integrity, such as, NaClO4, sodium dodecyl sulfate, p-chloromercuribenzoate, urea. ultrasonication, heating, pH and phospholinase C.The presence of binding sites that were normally inaccessible to ouabain in brain microsomes was demonstrated. These sites appeared after disruption of microsomes with 2 M NaClO4 as evidenced by increased binding of [3H]ouabain. These sites may be buried during the subcellular fractionation procedure and could be accessible in the intact cell.  相似文献   

16.
Highly purified lamb kidney (Na++K+)-ATPase was photoaffinity labeled with the tritiated 2-nitro-5-azidobenzoyl derivative of ouabain (NAB-ouabain). The labeled (Na++K+)-ATPase was mixed with unlabeled carrier enzyme. Two proteolipid (γ1 and γ2) fractions were then isolated by chromatography on columns of Sepharose CL-6B and Sephadex LH-60. The two fractions were interchangeable when rechromatographed on the LH-60 column, suggesting that γ1 is an aggregated form of γ2. The total yield was 0.8–1.5 mol of γ component per mol of catalytic subunit recovered. This indicates that the γ component is present in stoichiometric amounts in the (Na++K+)-ATPase. The proteolipids that were labeled with NAB-ouabain copurified with the unlabeled proteolipids.  相似文献   

17.
18.
19.
1. Addition of 3.5 mM ATP to mouse neuroblastoma Neuro-2A cells results in a selective enhancement of the plasma membrane permeability for Na+ relative to K+, as measured by cation flux measurements and electro-physiological techniques. 2. Addition of 3.5 mM ATP to Neuro-2A cells results in a 70% stimulation of the rate of active K+ -uptake by these cells, partly because of the enhanced plasma membrane permeability for Na+. Under these conditions the pumping activity of the Neuro-2A (Na++K+)-ATPase is optimally stimulated with respect to its various substrate ions. 3. External ATP significantly enhances the affinity of the Neuro-2A (Na++K+)-ATPase for ouabain, as measured by direct [3H]ouabain-binding studies and by inhibition studies of active K+ uptake. In the presence of 3.5 mM ATP and the absence of external K+ both techniques indicate an apparent dissociation constant for ouabain of 2·10?6 M. Neuro-2A cells contain (3.5±0.7)·105 ouabain-binding sites per cell, giving rise to an optimal pumping activity of (1.7±0.4)·10?20 mol K+/min per copy of (Na++K+)-ATPase at room temperature.  相似文献   

20.
Showdomycin [2-(β-d-ribofuranosyl)maleimide] is a nucleoside antibiotic containing a maleimide ring and which is structurally related to uridine. Showdomycin inhibited rat brain (Na+ + K+)-ATPase irreversibly by an apparently bimolecular reaction with a rate constant of about 11.01·mol?1·min?1. Micromolar concentrations of ATP protected against this inhibition but uridine triphosphate or uridine were much less effective. In the presence of K+, 100 μM ATP was unable to protect against inhibition by showdomycin. These observations show that showdomycin inhibits (Na+ + K+)-ATPase by reacting with a specific chemical group or groups at the nucleotide-binding site on this enzyme. Inhibition by showdomycin appears to be more selective for this site than that due to tetrathionate or N-ethylmaleimide. Since tetrathionate is a specific reactant for sulfhydryl groups it appears likely that the reactive groups are sulfhydryl groups. The data thus show that showdomycin is a relatively selective nucleotide-site-directed inhibitor of (Na+ + K+)-ATPase and inhibition is likely due to the reaction of showdomycin with sulfhydryl group(s) at the nucleotide-binding site on this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号